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ABSTRACT 

Methods for quantifying key forest parameters are crucial for numerous applications, but 

conventional approaches face certain challenges such as costs and accuracy. This thesis aimed to 

measure aboveground biomass (AGB) using biophysical tree metrics obtained from high-

resolution aerial imagery. More specifically, this research explored using canopy-based estimates 

of trunk diameter to quantify AGB, offering insights into improving forest parameter 

quantification methods. 

Using structure-from-motion (SfM), a 3D model was constructed, and GIS-based 

techniques were used to extract individual tree data. Remote biometrics were compared to field 

data, investigating the link between canopy and trunk diameter, a key predictor of AGB. The GIS 

workflow produced moderately accurate tree polygons, with highly accurate species 

classification results (84.8%). Canopy metrics from ground and remote data showed a moderate 

correlation, with canopy area being most consistent. Biomass estimates were reasonably accurate 

(with the top performing remote estimate being 81.9% accurate) but consistently underestimated 

AGB.  
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CHAPTER 1 

INTRODUCTION 

Wooded lands are integral to various aspects of our planet’s functioning. Forests and 

woodlands play a multifaceted role in climate regulation, atmospheric carbon dioxide removal, 

soil enrichment, erosion mitigation, habitat provision, biodiversity support, and resource supply, 

including food and wood (Lian et al., 2022; Xu et al., 2020). They are integral to global 

environmental stability and sustainability. However, forests and woodlands face formidable 

threats, including anthropogenic deforestation, increasingly frequent and intense wildfires, and 

prolonged droughts exacerbated by global climate change. These factors contribute to a positive 

feedback loop that further destabilizes the global climate. The rate at which these changes occur 

underscores the urgent need to address contributing factors. Not surprisingly, proper management 

of forest ecosystems has come to play a significant role in numerous initiatives and policies 

aimed at mitigating climate change. 

Programs relating to the reduction of greenhouse gases—particularly carbon offset 

programs—have become a commonly-applied means of mitigating climate change. Carbon offset 

programs issue credits to efforts to reduce or eliminate greenhouse gas emissions or sequester 

carbon dioxide (CO2) from the atmosphere and store it elsewhere. Such programs allow polluters 

to exceed a cap on their greenhouse gas emissions in exchange for climate benefits achieved 

elsewhere. Polluters effectively offset their CO2 emissions by purchasing carbon credits, or, in 

other words, investing money (proportionate to the amount of carbon they emit) into programs 

that will capture and store atmospheric carbon (Gurgel 2022). For example, a rubber 

manufacturer that has exceeded its CO2 emission cap may purchase carbon credits issued to a 

forest manager who agrees to decrease or suspend timber harvest, thereby allowing the factory to 
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claim the forest project’s generated climate benefits to offset their continued emissions beyond 

the regulatory limit. Reforestation projects and the reduction or delaying of timber harvests have 

been at the center of carbon offset programs due to the ability of forest vegetation to sequester 

carbon from the atmosphere (Lallo et al. 2017). Quantifying forest carbon, however, poses 

several challenges, including errors in accounting for tree growth timeframes and failure of tree 

establishment, underestimating emissions during project initiation, and neglecting natural and 

anthropogenic disturbances (Lefebvre et al., 2021). A recent study examined California's 

prominent forest carbon offsets program and found that the state's claims regarding climate 

equivalence are not supported by direct evidence (Badgley et al. 2021). They highlighted a 

common statistical error known as the ecological fallacy within the structure of California's 

forest offsets program. The ecological fallacy occurs when group-level characteristics, such as 

average distribution, are used to draw conclusions about individuals within that group. The 

ecological fallacy has resulted in systematic overrepresentation of biomass and carbon content in 

several biomass estimation models that are applied beyond their initial scope, resulting in errors 

reportedly as high as 240% (Weiskittel et al. 2015). These challenges emphasize the need for 

continuous monitoring of trees on an individual scale throughout the project duration. 

Carbon offset projects represent just one facet of the broader forest management 

endeavor that relies heavily upon frequent assessments of forest attributes. A host of other 

initiatives also rely on precise and timely assessments of forest ecosystems, including the Forest 

Inventory and Analysis (FIA) program, Reducing Emissions from Deforestation and Forest 

Degradation (REDD) efforts, carbon reduction plans that harness forests as carbon sinks, and the 

development of accurate climate models that incorporate terrestrial biogeochemical feedback 

(Iizuka et al. 2017). While forest ecosystems serve as the foundational support for numerous 
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climate change mitigation projects, the services these ecosystems provide are inherently 

transient, particularly in the face of mounting climate-related threats. Therefore, special 

recognition should be placed on the broader significance of maintaining and quantifying forest 

carbon to address the multifaceted challenges of our changing world. 

Wooded lands, which are subcategorized into forests and woodlands, are the largest 

terrestrial carbon pools.1, and thus play a significant role in the global carbon cycle (Xu et al. 

2020). Forests usually have a canopy cover greater than 60%, tend to be larger in geographic 

size, offer more shade, and support more biodiversity than woodlands. Woodlands have varied 

canopy covers ranging from 5 to 60% but typically have an open canopy structure and sparser 

tree density, allowing more sunlight to hit the floor, keeping the soil dry and unshaded (OpenAI 

2024). The open versus closed canopy structure is an important distinction, as it directly affects 

the ability to map trees at the individual level. Woodlands also tend to be transitionary buffers 

between forests and more open-grounded regions, such as savannahs and prairies, and host high 

biodiversity. Wooded Lands act as the largest terrestrial carbon sink2, effectively reducing 

atmospheric carbon and slowing down global warming. Tree carbon content is typically 

measured as a factor of biomass. Biomass, as dry weight, is approximately 50% carbon, and 

forests and woodlands comprise 70-90% of terrestrial aboveground and belowground biomass. 

(Cairns et al., 1997; Houghton et al., 2009). Therefore, measurements of biomass are essential to 

monitor carbon content properly. 

 
1 Carbon pools are the reservoirs where carbon is stored and released within the Earth's systems. Terrestrial carbon 
pools include carbon stored in vegetation, soils, and organic matter. There are also atmospheric carbon pools, oceanic 
carbon pools, and geologic carbon pools. 
2 Carbon sinks are natural or artificial reservoirs that absorb and store CO2 from the atmosphere, helping to mitigate 
climate change by reducing atmospheric CO2 concentrations. This is opposed to carbon sources, which release CO2 into 
the atmosphere, contributing to the increase in atmospheric CO2. 
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Obtaining accurate and frequent measurements of biomass is crucial for a multitude of 

reasons. From a strictly economic standpoint, biomass is the raw material of food, fiber, and 

fuelwood. The ability to accurately quantify forest productivity is, therefore, crucial to predicting 

global economic stability. To the ecologist, forest biomass is an important indicator of ecological 

health as it is related to vegetation structure, which, in turn, influences biodiversity. Forest 

biomass also has a significant impact on edaphic characteristics, hydrological properties, and fire 

regimes. Biomass governs the extent and rate of photosynthesis and controls the quantity of 

carbon released into the atmosphere when ecosystems are disturbed (Houghton et al., 2009). It is 

crucial to map and assess biomass in order to monitor its impacts on the environment across 

various scales. 

Aboveground biomass (AGB) is specifically of interest to most researchers. While soil 

organic matter (SOM) holds two to three times more carbon than aboveground biomass, the 

carbon is physically and chemically protected and not easily oxidized (Davidson & Janssens 

2006; Houghton et al. 2009). Conversely, aboveground biomass is in a continuous state of flux 

due to natural and anthropogenic disturbances, contributing to atmospheric carbon fluxes to a 

higher magnitude and thus is of far higher interest. The point to emphasize here is that 

aboveground biomass is ephemeral in nature, and while forests are the largest terrestrial carbon 

sink, they also have the potential to be one of the largest emitters of carbon when ecosystems are 

disturbed. Therefore, it is vital that there exists an effective manner to monitor and quantify AGB 

continually, and not just once and forget thereafter. Forest management plays a significant role in 

the fight against climate change, yet many complications exist in collecting accurate forest 

inventory data (Weiskittel et al. 2015; Badgley et al. 2017; Marino et al., 2022). Improved 

measurement methods are in high demand; thorough, accurate, and frequent measures of 
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aboveground biomass must be obtained to make effective policy decisions and better understand 

fluctuations in global atmospheric carbon levels. Accurate monitoring of forest biomass is 

necessary for carbon stock quantification, forest ecological management systems, and climate 

change impact assessment.  

Current methods for inferring AGB and carbon content have significant limitations; field 

methods are often too cost-prohibitive, labor-intensive, and time-consuming to be conducted at a 

large scale, while indirect methods (e.g., remote sensing) tend to lack the required degree of 

accuracy and precision. Remote sensing techniques offer various approaches for the collection of 

forest data for biomass estimation. Most remote sensing approaches that rely on orbital or high-

altitude aerial imaging systems yield landscape-scale estimates of biomass which, although 

useful, lack the spatial resolution needed to inform accurate, site-specific evaluations of biomass 

and do not account for fine-scale spatial heterogeneity (Jones et al. 2020; Lu et al. 2014). The 

recent development of small unoccupied aerial systems (sUAS) offers a potential alternative 

means to remotely accumulate the necessary species-specific data for highly accurate AGB 

estimates. 

The use of sUAS for environmental study and management has expanded exponentially 

in recent years, mainly as a result of technological advances that have given rise to low-cost 

passive and active remote sensing payloads. For site-specific assessments, sUAS offers 

comparatively large areal coverage capabilities that surpass those of in-situ data collection. 

Researchers can now extract exceptionally accurate canopy and height metrics by leveraging the 

high spatial, spectral, and temporal resolution offered by contemporary sUAS systems. 

Furthermore, sUAS technology has evolved to become an efficient, cost-effective alternative to 

other methodologies. Despite the proven effectiveness of sUAS as a powerful research tool, very 
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little research has investigated the use of variables extracted from high-resolution imagery in 

field-based allometric equations for aboveground biomass estimation. Consequently, this thesis 

seeks to explore the efficacy of incorporating remotely sensed variables into species-specific 

allometric equations as a means of augmenting more traditional methods for estimating 

aboveground biomass. 

Existing allometric equations for a multitude of tree species have been based on three 

easily obtainable metrics from ground surveys—namely, tree species, height, and diameter and 

breast height (DBH). While the first two metrics are readily obtainable using conventional image 

processing techniques, the third is not. As such, this thesis seeks to develop alternative means for 

measuring DBH via canopy-based estimates. Following Iizuka et al. (2017) and Jones et al. 

(2020), the working hypothesis of this thesis is that canopy structure can be used to effectively 

predict DBH for use in existing species-specific allometric models to quantify aboveground 

biomass.  

It should be noted, however, that much of the research on using drones to measure tree 

metrics and to develop allometric equations has been conducted in conifer forests (e.g., 

Argomosa et al. 2016; Goodbody et al. 2017; Iizuka et al. 2017; Jing et al. 2012). This approach 

is relatively untested for hardwoods/broadleaf species, which tend to have more complicated and 

diverse forms. As such, this study will test the utility of four different canopy metrics for 

estimating DBH: perimeter, area, volume, and width. This process will require five steps: (i) 

collect in situ data for the three dominant tree species on the study site for key metrics including 

DBH, height, and canopy dimensions in order to calibrate the model; (ii) biomass calculation and 

model calibration via regression analysis to develop linkages between canopy (which can be 

remotely-sensed) and DBH; (iii) photogrammetry and GIS-based workflow to produce metrics—



7 
 

including species, height, and canopy dimensions—at the individual tree level; (iv) model 

calibration via regression analyses with the remotely sensed canopy dimensions and field-based 

DBH values, and biomass estimation; and (v) accuracy assessment of the remotely sensed data 

(generated in step (iii)) and biomass estimates (generated in step (iv).  

In summary, while forests and woodlands provide a host of ecosystem services and hold a 

crucial role in regulating global climate, various challenges exist with contemporary methods for 

monitoring forest parameters. This thesis aims to develop a procedure to efficiently quantify 

forest parameters, including aboveground biomass while preserving accuracy. The theory being 

tested herein is that canopy-based estimates of DBH can provide an accurate quantification of 

AGB while providing more efficiency and cost-effectiveness than traditional field methods. 
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CHAPTER 2 

CONCEPTUAL FRAMEWORK 

Contemporary methods of biomass quantification have significant challenges associated 

with them. The only direct method to weigh biomass is costly in terms of monetary, labor, and 

time. To obviate these costs, an indirect method was established through tree allometry, or in 

other words, by establishing relationships between the biophysical parameters of a tree and its 

aboveground biomass content in order to estimate its AGB. A vast amount of emphasis has been 

placed on coniferous trees in the past as they are economically significant for timber production 

in many regions. As a result, allometric relationships for broadleaf tree species are less 

established in the literature. Nonetheless, in recent years, there has been a growing recognition of 

the importance of developing allometric equations for a diverse range of tree species. New 

remote sensing technologies and forest management objectives have placed new value on tree 

species that may not have traditionally been valued by the timber industry—including the 

multitrunked or broad-leafed species in this thesis. The following discussion outlines the present 

state of forest parameter extraction and biomass estimation, including conventional methods as 

well as novel research, which this thesis tries to emulate.  

2.1 Why More Effective Methods of Measurement for AGB are Needed 

 A recent study investigated the design of California's prominent forest carbon offsets 

program, and it demonstrated that California’s climate-equivalence claims fall quite short based 

on directly observable evidence. Badgley et al. (2021) quantify systematic statistical and 

ecological deficiencies within California's forest offsets protocol, which issues upfront carbon 

credits to Improved Forest Management (IFM) projects based on flawed calculations of average 

regional carbon stocks. They pinpoint a prevalent statistical error, referred to as the ecological 
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fallacy, within the structure of California's forest offsets program—the most significant 

compliance market currently in operation (Badgley et al. 2021). The ecological fallacy arises 

when group-level characteristics, such as the average of a distribution, are employed to make 

inferences about individuals within that group. Weiskittel et al. (2015), in their review of biomass 

estimation models’ limitations, claim that the application of tree biomass models across various 

spatial scales, ranging from local to international, beyond their original scope can lead to notable 

errors, reportedly reaching as high as 240%. These points highlight the necessity of analyzing 

trees at the individual level. The practice of averaging dissimilar tree species across arbitrarily 

defined geographic regions facilitates, and potentially even encourages, the development of 

offset projects that assert false carbon credits, primarily through adverse selection (Badgley et al. 

2021). Their findings reveal that nearly a third of the credits examined lack genuine climate 

benefits and instead result from methodological flaws. The key takeaway here is that significant 

methodological flaws exist within biomass and carbon quantification efforts, leading to serious 

errors. A potential means for mitigating this error is to look at trees at the individual level rather 

than applying generalized equations to a sample plot. 

2.2 How Biomass is Measured 

The “gold standard” for measuring biomass density at a forest sample plot is a labor-

intensive and destructive endeavor. The commonly accepted method involves felling a large 

number of trees of various sizes and geographies representative of the sample area, harvesting all 

the organic material from each tree, drying it to a constant weight, and then weighing it. This 

destructive method becomes exponentially more difficult if belowground portions are also 

accounted for and if the vegetation includes large trees. The sample size and methodology are 

crucial as small sample sizes will either overestimate or underestimate mean biomass density if 
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they include or exclude large trees, respectively (Houghton et al. 2009). While this is the only 

direct method that actually weighs the biomass, it is best reserved for small sample plots where 

there is uniformity in tree size (e.g., a pine tree plantation). All things considered, the destructive 

nature, time, costs, and labor involved in this method render it unsuitable for use in large study 

areas. To counteract these issues, foresters and ecologists have established indirect methods for 

approximating biomass density. Most commonly, they utilize empirically based allometric 

equations derived from destructive sampling. These allometric equations are statistical models 

correlating the actual biomass to certain tree biometrics that can be obtained non-destructively 

and reasonably easily—namely, diameter at breast height (DBH) and tree height (Maulana et al., 

2016)—yielding accurate estimates of aboveground biomass. Furthermore, species-specific 

allometric equations are favored as trees of distinct species tend to have vastly differing tree 

architecture and wood density (Ketterings et al., 2001). This indirect approach allows for the 

calculation of biomass density across a more extensive scale without the limitations of the 

destructive sampling method. This systematic sampling of aboveground biomass using 

allometric equations, however, does require in-situ collection of input data, including DBH, 

height, and taxonomy from representative trees in order to calibrate the allometric equations 

(Houghton et al., 2009). This technique is also fairly labor intensive and subject to its own 

limitations, such as the exclusion of trees located in inaccessible areas. Moreover, it is unknown 

how well these allometric equations perform beyond the “calibration” zone (i.e. when the field 

data are extrapolated to larger regions), but the accuracy is typically higher for less complex 

forest structures (Ketterings et al. 2001; Houghton et al., 2009). 

Allometric equations can suffer bias introduced from the variables that characterize the 

site where they were developed. When using allometric equations, caution should therefore be 
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exercised as topography, soil conditions, forest density, climate, and hydrology are all factors that 

can vary from site to site and potentially affect allometry between tree biometrics. This 

variability can, in turn, affect the accuracy of allometric equations (Lu et al., 2014). More 

importantly, a significant limitation with site-specific equations, in addition to the cost of 

destructive biomass sampling, is that they are typically based on a small (and oftentimes 

unrepresentative) sample size (Ngomanda et al., 2014). For instance, Ngomanda et al. 2014 

describe situations where, at the time of data collection, a single allometric equation was based 

on a sampling of more than 30 trees with wide-ranging DBH values. 

Based on this author’s review of published literature, only one study of similar scope to 

this thesis has been conducted in California—coincidentally in close proximity to this author’s 

study site—to measure blue oak biomass (Karlik & Chojnacky, 2013). In addition, only one 

equation exists for interior live oak (Pillsbury & Kirkley, 1984), and there is not a specific 

equation for California buckeye but rather a plurispecific equation for “mixed hardwoods” 

(Jenkins et al., 2003). Karlik and Chojnacky’s allometric equation is based on 14 blue oaks in the 

same region as this author’s study site, but the sample size may not be large enough to prove 

statistically significant. Pillsbury and Kirkley’s equation for interior live oaks is based on 60 

samples obtained throughout their natural range in California, although the equations were 

developed for use for specific study sites for which detailed descriptions are not provided by the 

authors. The equations of Jenkin et al. for mixed hardwoods are plurispecific equations intended 

for general use for any tree that fits that category. When applying allometric equations to 

estimate biomass, one is consequently confronted with the dilemma of using non-site specific, 

generalized, or occasionally even plurispecific equations developed from robust but possibly 
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biased data or using a site-specific equation developed from limited data, and thus characterized 

by a lower presumed precision of prediction (Ngomanda et al., 2014). 

The above discussion implies that careful selection of suitable allometric models for 

specific tree species is a critical step for conducting biomass studies. When the biomass for a 

specific study site is the objective, Pillsbury and Kirkley 1984 suggest applying a specific 

regression model that is matched closely to the site rather than generalized regression models 

developed for large-scale applications. If such an equation is not available, they recommend 

applying a range of site-specific equations” (Pillsbury & Kirkley, 1984). This approach yields a 

series of biomass estimates that both increase the probability that the actual biomass value for the 

study site will be included and provide a basic estimate of the uncertainty innate in biomass 

calculations. 

 While field-based methods generally provide higher degrees of accuracy, remote sensing 

data offers a means to quantify biomass on a much larger spatial scale. Remote sensing’s distinct 

advantages for data acquisition, including potentially large aerial coverage and digital format, 

establish it as the leading data source for large-scale biomass estimation. Remote sensing is 

defined as a technique that acquires information about an object of interest without being in 

direct physical contact with it. There are two major categories of remote sensing instrumentation, 

namely, active systems (sensors emit their own energy source in the direction of a target and 

measure the backscatter reflected back to the sensor) and passive systems (sensors measure 

irradiance from the sun reflected off of a target on the Earth’s surface). Variables for modeling 

aboveground biomass can be acquired through passive optical (e.g., multispectral, hyperspectral, 

or thermal imagery) or active sensor (e.g., LiDAR or radar) data. With remote sensing, biomass 
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is commonly modeled through the use of textural information3 on the vegetation structure or 

vegetation indices that are correlated with biomass (Kumar & Mutanga 2017). Caution must be 

exercised when applying such techniques as uncertainties in modeling aboveground biomass 

using remote sensing data are high due to nuances in vegetation structure, landscape 

heterogeneity, seasonal variations, and inconsistent data availability, among other factors (Kumar 

& Mutanga, 2017). While much research has focused on investigating the use of remote sensing 

in biomass modeling, procedures to choose fitting variables from remote sensing data and to 

create accurate estimation models are still inadequately understood (Lu et al., 2014). Although 

remote sensing allows for large-scale biomass estimation, much more research is needed to 

improve our understanding of appropriate variables and methods. 

2.3 Aboveground Biomass Estimation Using Remote Sensing Methods 

As stated previously, remote sensing offers a considerable advantage for biomass 

estimation in that it can provide data over large areas and inaccessible terrain at a fraction of the 

cost associated with in-situ sampling. Remote sensing data is available at various scales, from 

local to global, and from a multitude of platforms such as satellites, crewed aircraft, sUAS, and 

surface-based systems. Passive (optical) and active remote sensing data are readily available for 

a large portion of the globe, but it is important for the researcher to understand the advantages 

and limitations of each. own pros and cons. Developing an accurate remote sensing model for 

estimating biomass requires detailed spatial biomass reference data (Avitabile et al., 2011; Lu et 

al., 2014) to establish relationships between suitable variables and biomass. Once the 

 
3 Texture describes the patterns or surfaces that can be seen in imagery (e.g., texture helps users discern between smooth 
surfaces—such as a lake or agricultural field—and rough surfaces—such as a dense forest. Texture can inform users if 
trees are spaced apart or close together, if they exist in rows, or if they are different kinds of trees. Statistical and 
mathematical techniques are used to quantify textural information (OpenAI 2024). 
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prerequisite for accurate biomass reference data is met, there are various ways remote sensing 

data can be used to estimate biomass.  

Optical Remote Sensing 

Optical remote sensing consists of acquiring data about a target of interest through the 

use of passive imaging systems. This technique involves capturing and recording reflectance 

values primarily in the visible, infrared, and thermal regions of the electromagnetic spectrum in 

order to derive information about vegetation structure and vigor. Optical remote sensing offers 

perhaps the best alternative to in-situ biomass estimation mostly due to its potentially large areal 

coverage, repeatability, and cost-effectiveness (Kumar & Mutanga, 2017). Optical sensors offer 

various spatial, spectral, radiometric, and temporal resolutions depending on the type of platform 

and sensor design. Some of the variables that can be extracted from optical sensors for use in 

biomass estimation include vegetation indices.4, image transform algorithms, texture measures, 

and spectral mixture analysis (Lu et al., 2014). Vegetation indices have been correlated with 

biomass, but the relationships vary with forest complexity and soil properties. There are methods 

for extracting texture from imagery, but textural data alone is a poor indicator of biomass, 

especially in simple forest stand structures. However, combining texture with spectral response 

(e.g., vegetation index or spectral signature) strengthens biomass estimation compared to using 

only one or the other (Lu et al., 2014). 

While optical remote sensing data have been the primary source for biomass modeling, 

prior studies by other researchers have revealed that data saturation, particularly in forested areas 

 
4 A vegetation index is a numerical measure that quantifies some vegetation parameter (e.g., plant biomass and plant 
health) derived from a multispectral image. The index is calculated from spectral bands that are sensitive to vegetation 
characteristics such as vigor, moisture content, or biomass. They are used to enhance sensitivity to vegetation 
characteristics and reduce confounding factors such as soil background reflectance or atmospheric effects (OpenAI 
2024). 
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with above-average densities of biomass, is one of the critical issues causing weak biomass 

estimation performance (Lu et al. 2014). Spectral-based variables also tend to be unpredictable 

and affected by outside factors such as atmospheric conditions, edaphic (soil-related) 

characteristics, vegetation phenology, and vigor (Lu et al., 2014). The traits of vegetation and the 

intricate biophysical conditions of the surrounding environment affect spectral signatures. 

Consequently, models that estimate biomass based on spectral variables cannot be reliably 

transferred to widely separated study sites. Optical sensors are also affected by atmospheric 

conditions such as scattering, the presence of clouds, and aerosols (mostly soot and salt crystals), 

which negatively impact the acquisition of images, particularly in tropical regions. Nonetheless, 

optical remote sensing data excel at revealing horizontal vegetation structure (e.g., vegetation 

type and canopy dimensions). On the other hand, some optical sensors (particularly those fitted 

to orbital platforms) are not well-suited for use in the extraction of vertical vegetation features 

such as height, which is a crucial parameter for biomass estimation. It should be noted that some 

optical sensors provide stereo-viewing capability, which allows for the acquisition of vertical 

data and improves the accuracy of biomass estimates. 

Radar Remote Sensing 

RADAR (Radio Detection and Ranging) has recently garnered interest for biomass 

modeling mainly due to its ability to accurately model vegetation structural attributes in 

practically any prevailing weather condition. In particular, Synthetic Aperture Radar (SAR) is 

gaining prominence for its potential to accurately survey aboveground biomass by leveraging its 

ability to penetrate cloud cover and forest canopy and sensitivity to water content in vegetation 

(Lu et al., 2014). Nonetheless, achieving data saturation is also an issue with radar methods when 

backscattering values are employed to model biomass. One alternative used to address the data 
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saturation problem is the use of Interferometry Synthetic Aperture Radar (InSAR). Lu et al. 

define InSAR as “a technique in which the coherence of data is collected over a short time 

increment by two identical instruments.” The referenced authors also report that InSAR can 

increase the saturation range to a certain degree and thus improve the height-based biomass 

estimation. Despite its distinct advantages, InSAR data has been shown to be highly dependent 

on site conditions such as temperature, wind speed, and humidity, and variations in these 

conditions can negatively impact the accuracy of biomass estimation. Moreover, radar data is not 

suitable for differentiating vegetation types, a limitation that further reduces the accuracy of 

biomass estimates.  

LiDAR Remote Sensing 

LiDAR (Light Detection and Ranging) remote sensing is a comparatively recent 

technology that is gathering increasing attention for biomass modeling. Although similar in 

concept to RADAR, LiDAR systems use laser light rather than radio signals to generate three-

dimensional models of terrain and vegetation structure. Much research has shown a strong link 

between LiDAR-based vegetation parameters and aboveground biomass. With aerial LiDAR, 

measurements can be obtained for either individual trees or entire forest stands (Chen, 2013). 

The methodology for extracting metrics for individual trees entails delineating individual tree 

features such as treetop, crown radius, or crown perimeter. LiDAR’s ability to resolve the 

vertical distribution of forest canopies as well as the terrain surface below enables researchers to 

generate highly detailed models of vegetation structure and thus illustrates great potential for 

biomass quantification (Lefsky et al., 2002). Area-based methods are now widely used to 

generate statistical metrics derived from the LiDAR point cloud or canopy height model at the 

plot or stand level and employ the models across the entire study site (Chen, 2013; Lu et al., 
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2014). The vast majority of LiDAR metrics can be created from either point clouds or canopy 

height models. Although LiDAR's ability to extract both horizontal and vertical canopy structure 

makes it extremely useful for biomass estimation, LiDAR as a remote sensing tool does come 

with its own limitations. For example, modeling individual trees demands high point cloud 

density and thereby requires more storage space and processing time. In addition, the 3D 

distribution of a tree’s laser point cloud can fluctuate due to changes in point density, scan angle, 

and footprint size, all of which are dependent upon individual sensor design and flight 

parameters used for data acquisition (Lu et al., 2014). LiDAR payloads are also more costly and 

heavier compared to optical sensor payloads, and the extra weight translates to less efficient data 

acquisition when collecting data with sUAS. 

Structure from Motion (SfM) 

 A 2016 study by Wallace et al. investigated the potential application of sUAS aerial 

imaging to quantify structural properties of forests by comparing two different remote sensing 

techniques: aerial laser scanning (ALS)5 and structure from motion (SfM). SfM is a 

photogrammetric technique that enables the modeling of three-dimensional surfaces using 

overlapping sequences of two-dimensional aerial and/or terrestrial images. As part of their study, 

the authors tested and compared the ability of ALS and SfM to accurately reconstruct a 30m x 

50m scene consisting of a dry sclerophyll eucalyptus forest with spatially varying densities of 

canopy cover. Their results indicate that both techniques are suitable for acquiring accurate data 

on terrain and forest attributes for areas of relatively low canopy closure; however, ALS 

outperforms SfM in capturing the terrain surface in areas where canopies are denser. Due to the 

 
5 ALS refers to a LiDAR payload mounted on an aerial platform for the acquisition of data. This is opposed to 
Terrestrial Laser Scannning (TLS) where a LiDAR payload is mounted on a ground-based vehicle or pole for the 
acquisition of data. 
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ability of ALS to penetrate dense vegetation and model vegetation and terrain surfaces in areas 

that are invisible to conventional aerial imaging, ALS scans produce better point clouds and, in 

turn, more accurate digital elevation models and tree height and canopy data. 

Another study conducted in 2017 by Mlambo et al. aimed to assess whether SfM from 

sUAS could serve as a cost-effective method for forest monitoring in developing countries, 

particularly within the framework of Reducing Emissions from Deforestation and Forest 

Degradation (REDD+) activities. That project assessed the horizontal and vertical accuracy of 

SfM in measuring individual tree heights. Aerial imagery was acquired for two sample sites and 

the derived SfM digital surface models were compared to LiDAR-generated-digital surface 

models and surface models at the first site, and ground measured tree heights at the second. The 

results demonstrated a robust correlation between the SfM and LiDAR digital surface models (R2 

= 0.89) and canopy height models (R2 = 0.75) at the first site. Conversely, at the second site, a 

weak correlation was observed between SfM tree heights and ground-measured heights (R2 = 

0.19). The suboptimal performance at the second site was attributed to the closed canopy 

structure of the forest plot, limiting the generation of below-canopy ground points by SfM. 

Without sufficient ground points, it is challenging to interpolate the ground surface from aerial 

imagery, and, as a result, the accuracy of the SfM-derived tree heights suffers. Additionally, the 

study evaluated the efficacy of sUAS surveying methods for plot-level forest monitoring. Despite 

its limitations in closed canopies, SfM modeling using sUAS imagery can still offer a cost-

effective solution in developing countries where forests have sparse canopy cover (<50%), 

enabling effective capture of individual tree crowns and ground surfaces through SfM 

photogrammetry. 
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A recent 2020 study by Xu et al. examined the use of SfM-derived point clouds and 

multispectral imagery to classify tree species in a subtropical forest. The authors of that study 

used SfM technology to generate a point cloud and then subsequently classified the dominant 

tree species in a heterogeneous forest using a mix of spectral data and structural data. They 

implemented a multi-resolution segmentation (MRS) algorithm based on edge detection with a 

segmented image derived from a mosaic dataset consisting of a canopy height model (CHM) and 

an RGB orthomosaic to delineate individual tree crowns (ITCs). Their research illustrated the 

potential of SfM point clouds to extract 3D vegetation structure and a useful methodology to 

distinguish tree species. Their research indicates that SfM point clouds are comparable to 

LiDAR-derived point clouds in forests with an open canopy structure. They can be used in 

conjunction with optical multispectral sensors to acquire spectral-based variables and vegetation 

structural characteristics.  

Integration of Multisource Data 

Optical sensors, radar, and LiDAR all have their advantages and disadvantages; however, 

assimilation of data acquired using two or more of these technologies can effectively reduce the 

negative effects of these limitations and enhance the accuracy of biomass estimates. Lu et al. 

(2014) contend that effective integration of sensor types is necessary to improve biomass 

estimation. Combining LiDAR data with optical multispectral data yields a dataset with both 

structural and spectral metrics, both of which are known to increase biomass estimation 

performance. On the other hand, prior research has demonstrated mixed results when integrating 

LiDAR with optical data (Lu et al., 2014). Another method that fuses multiple types of data uses 

spectral metrics to distinguish vegetation types, a useful variable for allometric models. Chen et 

al. (2012) implemented this approach and integrated optical multispectral and LiDAR data for 
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modeling biomass in California. Their findings suggested that the availability of information on 

vegetation type can drastically increase the estimation accuracy of biomass.  

Linking Tree Canopy to DBH 

 While there exists an emerging trend toward utilizing sUAS to collect data for various 

forestry-related analyses, the relationships between biophysical parameters such as tree 

canopy—which can be readily obtained through sUAS imaging—and DBH have seldom been 

described. Research conducted by Izuka et al. (2017) aimed to evaluate the utilization of 

photogrammetry for estimation of forest parameters. Specifically, they wanted to test the 

reliability of using canopy dimensions to estimate DBH. Their analysis revealed that canopy 

metrics are highly correlated with individual tree DBH, thus suggesting that sUAS imagery can 

indeed be used to efficiently inventory forests and effectively monitor aboveground biomass. 

This thesis investigated DBH from canopy metrics that could be easily obtained from 

sUAS image acquisition missions. This approach stemmed from literature suggesting that the 

growth of DBH could be influenced by various factors beyond just tree height (Iizuka et al., 

2017), a notion corroborated by observations made in the field. Existing literature suggests that 

the trajectory of DBH growth may vary depending on factors such as foliage density, light 

exposure, wind patterns, and water availability, all of which contribute to tree architecture (Izuka 

et al., 2017). Thus, instead of focusing on tree height, canopy structure was the main focus for 

the estimation of DBH. 

Remote-Sensing-Based Allometric Modeling 

 Although LiDAR and SfM point clouds provide 3D data pertaining to vegetation 

structure, it is quite challenging to derive detailed information about dimensions under the 

canopy (such as the diameter of the trunk) from remotely sensed data. For this reason, remotely 
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sensed data has traditionally not been considered suitable for use in biomass modeling with 

allometric equations, which rely on accurate data about trunk diameter. Nevertheless, a recent 

2021 study by Jones et al. demonstrates the potential for incorporating remote sensing in 

allometric modeling. In their study, the authors demonstrated proof-of-concept for utilizing 

variables obtained from sUAS imagery to estimate aboveground biomass in a mangrove forest. 

Their research confirmed that the diameter of the tree trunk is the best predictor of biomass, and 

other biometrics, such as tree height and canopy area, have poor relationships with biomass. 

Recognizing the fact that trunk diameter cannot be determined reliably from sUAS imagery, they 

instead ran their regression models based on known correlations between remotely sensed 

canopy metrics and DBH. They used the relationships between canopy and trunk diameter to 

predict DBH, thereby allowing them to predict aboveground biomass using the predicted DBH 

values. One critical element of the referenced study is that the authors had a very small sample 

size to work with (n = 10), thus lowering their ability to clearly establish the link between canopy 

area, tree height, and diameter metrics (Jones et al., 2020). Nonetheless, their study illustrates the 

potential for employing sUAS imagery to develop three-dimensional models of tree structure and 

acquire biometric measurements to estimate aboveground biomass (AGB) and carbon. 

 The discussion above provides an overview of the current state of biomass estimation, the 

different procedures used, the pros and cons of each method, and the need for an improved 

methodology. The literature indicates that canopy has a strong link to DBH and can thus be used 

to measure AGB indirectly. The canopy-DBH relationship may very well be unique for different 

tree species, especially with coniferous and broadleaved trees (and potentially with softwoods 

and hardwoods). This research will, therefore, test the relationships between canopy and DBH 

for each tree species. The objective of this research is to produce estimates of AGB using sUAS 
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imagery in an attempt to find a more accurate and efficient site-based method of AGB estimation 

compared to current methods. This research will reveal which canopy biometric is the best 

predictor of DBH for broadleaved trees in our study area.  

The use of passive optical sensors as payloads on sUAS for environmental study and 

management has expanded exponentially in recent years. The advantages of these types of low-

altitude remote sensing systems are clear; they allow for far greater coverage in less time than in-

situ data collection, they can acquire highly accurate canopy and height metrics as derived from 

imagery and point cloud data using SfM technology, and they are relatively inexpensive, less 

data-intensive and allow for more efficient data collection compared to LiDAR. In the final 

analysis, they are more efficient, less labor intensive, and more cost-effective than other 

methods. Using sUAS-derived tree biometrics to predict DBH combined with the deployment of 

allometric equations demonstrates potential to be a powerful tool for biomass estimation. 

Consequently, this thesis proposes a procedure wherein forest inventory techniques and remotely 

sensed imagery are combined as a means to quantify aboveground biomass and carbon for the 

blue oak woodland on a study site described in Section 3.1 of this thesis.  
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CHAPTER 3 

METHODS AND APPROACH 

This project aims to develop a remotely sensed procedure for determining ABG for a 

representative California Oak woodland landscape. This requires five steps (see Figure 1): (i) 

collect in situ data for the three dominant tree species on the study site for key metrics, including 

DBH, height, and canopy dimensions in order to calibrate the model; (ii) biomass calculation and 

model calibration via regression analysis to develop linkages between canopy (which can be 

remotely-sensed) and DBH; (iii) photogrammetry and GIS-based workflow to produce metrics—

including species, height, and canopy dimensions—at the individual tree level; (iv) model 

calibration via regression analyses with the remotely sensed canopy dimensions and field-based 

DBH values, and biomass estimation; and (v) accuracy assessment of the remotely sensed data 

(generated in step (iii)) and biomass estimates (generated in step (iv).   

This research consisted of acquiring true-color and multispectral imagery using a fixed-

wing sUAS in conjunction with field data, supervised digital image classifications, and image 

segmentation methods to determine whether these remote sensing methods can provide a basis 

for accurate assessments of dominant tree species and aboveground biomass. Initially, data were 

collected in the field, and then statistical analysis and biomass calculation were performed with 

the field data. Following field data collection, the sUAS imagery were collected and digitally 

processed using Structure from Motion (SfM) software to generate a SfM point cloud and both a 

true-color and multispectral orthomosaic. Next, supervised classification via object-based image 

analysis (OBIA) was used to delineate the dominant tree species. Finally, the biophysical tree 

data generated from the remotely sensed imagery were compared with the field data and used to 

generate estimates of aboveground biomass. 
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Figure 1: The general workflow employed in this thesis. 
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3.1 Study Site 

This research was conducted at River Ridge Ranch, a 722-acre former cattle ranch 

located in the western foothills of the Sierra Nevada mountains of central California (see Figure 

2). The ranch is situated along the easternmost perimeter of the San Joaquin Valley, which, in 

turn, comprises the southern portion of California’s Central Valley. The climate in this area is 

characterized by hot, dry summers and cool, rainy winters. Significant winter snowfall is 

uncommon, although a light dusting occurs occasionally with the passage of cold Pacific winter 

storms. The region has an average annual precipitation of 283 mm and an average annual 

temperature of 23 °C. The average annual low temperature at this relatively low-elevation site is 

2.3 °C with an average summer daytime high of 36.8 °C (1961-1990). The River Ridge Ranch 

property is characterized by a highly varied topography, locally high relief, and elevations that 

range from 311 meters to 867 meters above the WGS 84 ellipsoid. 

  

Figure 2: Location of study site, River Ridge Ranch, a former cattle ranch and current working reserve near Springville, CA 
in the Sierra Nevada Foothills The map images are basemaps from ArcGIS Pro (ver. 3.1.2) along with an orthomosaic 
stitched together from our drone imagery in Pix4D. 
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This landscape of River Ridge Ranch is best described as a blue oak woodland dominated 

by three broadleaved hardwood tree species. The ranch comprises three distinguishable habitat 

types: riparian, pasture, and hillside. Owing to the availability of surface water throughout the 

year, the riparian corridor produces a much higher abundance and diversity of trees and tree 

species than the hillside area. The pasture was cleared of trees during the original settlement 

period (ca. the late 1800s) to make sufficient land for grazing, and for this reason, is mostly 

devoid of trees. Given the relative absence of trees in the flat-lying pasture, this research focuses 

on the sloping portions of the ranch where there is a sparse to moderately dense distribution of 

trees. The hillside has an overall west-facing aspect with heterogeneous microtopography. There 

are also several drainage basins and small, ephemeral tributary streams which produce a more 

clustered distribution of trees than the open canopy seen throughout the remainder of the ranch. 

Appendix A shows images representative of the general landscape of the ranch. The blue oak 

woodland provides a unique research opportunity as multitrunked trees of the types common to 

River Ridge Ranch have largely been neglected in the literature, at least at the individual tree 

level.  
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3.2. Step I: Field Measurements 

This study focuses on the three dominant species that populate the sloping portions of the 

ranch. These include blue oak (Quercus douglasii), interior live oak (Quercus wislizeni), and 

buckeye (Aesculus californica). A variety of biophysical parameters were recorded as part of the 

ground survey. Positional data were collected using sub-meter-accuracy Eos Arrow 100 GNSS 

receivers and were used to map the drip line of tree crowns in-situ. Diameter tapes were used to 

collect the DBH for sampled trees. In instances where trees had multiple trunks, the DBH was 

initially collected for each trunk. This technique was later modified such that the DBH was 

calculated by taking the square root of the sum of all the squared DBH measurements. Laser 

rangefinders (TruePulse 360R) were used to measure tree height using the sine method in which 

three distance measurements are taken using the rangefinder —namely, where the tree meets the 

ground, at eye level, and at the top of the tree. The angles formed from eye level to the top and 

bottom of the tree and the distances to these points were used to calculate tree height (see Figure 

3). All tree measurements and positional data were recorded in real-time using a web map that 

was accessed via a mobile GIS application (Esri Field Maps). Figure 4 shows the distribution of 

collected trees on the ranch, as well as a false-color composite and DTM to illustrate the 

vegetation and terrain conditions.  
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Figure 4: Overview of River Ridge Ranch with the locations of the field collected samples, false color composite 
(NIR, red, and green), and DTM. 

Figure 3: Depiction of the sine method of measuring tree height. 
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3.3 Step II: Biomass Calculation and Model Calibration via Regression Analyses 

AGB Ground Truth Data and Estimates Species-specific allometric equations were used to 

calculate the observed aboveground biomass values for the trees sampled during the ground 

surveys. The biophysical parameters acquired for each tree, typically DBH and tree height, were 

plugged into the species-specific allometric equations to quantify AGB, thereby yielding the 

observed values. Next, the DBH estimates calculated from the different canopy dimensions from 

both the field and remotely sensed data were plugged into the species-specific allometric 

equations and compared to the observed values. Table 1 shows the allometric equations used for 

each tree species. 

 

Statistical Analysis 

Statistical analysis was conducted in both Microsoft Excel (Microsoft, 2023) and SPSS 

Statistics software (IBM, 2023). Excel was used to sort the data alphabetically by tree species 

and calculate summary statistics. Simple regression analyses were performed for four separate 

metrics of tree canopy—canopy perimeter, crown area, crown width, and canopy area multiplied 

by tree height (a proxy for canopy volume represented as CA*H)—and tree trunk diameter at 

breast height (DBH) for each tree species. SPSS was used to perform multiple regression 

analyses using three different modeling methods (forward, backward, and enter). These analyses 

were performed on the field data to establish relationships between canopy and DBH to 

investigate the usefulness of this method. 

 

Blue Oak Live Oak Buckeye

Species Specific 
Allometric Equation for 

Calculating AGB
AGB = (.0000697541*(DBH^2.33089) × 

(HT^0.461))*755
AGB = (.0000446992*(DBH^2.31958) × 

(HT^0.62528))*700
AGB = exp(-2.48 + 2.4835 × 

ln(DBH))

Reference Pillsbury & Kirkley (1984) Pillsbury & Kirkley (1984) Jenkins et al (2004) 

  p  p   qTable 1: Species-specific allometric equations 
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3.4 Step III: Photogrammetry and GIS-based Extraction of Tree Parameters 

Remote Sensing Data Collection 

True color and multispectral imagery were required in order to obtain the critical 

parameters for use in the model proposed in this thesis—species information and canopy. In June 

of 2022, this research team acquired aerial imagery of the entirety of River Ridge Ranch using a 

SenseFly (now AgEagle Aerial Systems) eBee X fixed-wing sUAS. The initial imaging mission 

was performed on June 14, 2022, and included the collection of over 4,500 images using a 

Sensefly SODA 3D true color (RGB) 20-megapixel camera. The camera was programmed to 

simultaneously collect both vertical (at-nadir) as well as low-angle (28°) oblique images to 

enhance the SFM point cloud generation. On June 21, 2022, multispectral imageries were 

collected using a MicaSense RedEdge-MX five-band sensor capable of capturing imagery in the 

three visible bands (red, green, and blue) and two near-infrared (NIR) bands. This camera was 

also flown as a payload aboard the senseFly eBee X platform. Geolocation of all RGB and 

multispectral imagery was augmented using real-time kinematic (RTK) differential corrections 

provided by a SenseFly GeoBase GNSS base station. SenseFly’s proprietary eMotion 3 mission 

planning and flight management software was used to plan and conduct each flight. eMotion 

functions as a fully autonomous desktop flight monitoring system that continuously streams in-

flight data produced by the eBee’s onboard autopilot, GPS, inertial measurement unit (IMU), and 

camera payload. Both the true color and multispectral imaging missions were flown in four 

blocks to cover the extent of the study site. All imagery was collected between 11 am and 2 pm 

local time with optimal weather conditions to minimize distortion from shadows and atmospheric 

effects. The parameters of the sUAS flights are shown in Table 2 below.  



31 
 

 

Image Processing 

Both multispectral and true-color data were digitally processed using Pix4D Professional 

photogrammetry software(Pix4D SA, 2023). The Pix4D processing algorithm is based on 

structure from motion (SfM), a photogrammetric technique that allows the reconstruction of 

three-dimensional landform structure from a series of overlapping two-dimensional images. The 

images’ metadata (RTK-corrected GNSS location and platform orientation from the onboard 

IMU) are used to calculate the camera positions and orientations for each image to estimate the 

3D structure of the scene. The output products from the photogrammetric processing included 

high-resolution orthomosaics for the entire River Ridge Ranch site, as well as 3D point cloud 

data and digital elevation products (including digital surface models and digital terrain models). 

The true color and multispectral imagery processing parameters are outlined in Appendix B and 

C, respectively. 

3,570 images with an average GSD of 4.12 cm were fused together to generate the true 

color orthomosaic with an X, Y, and Z geolocation RMSE of 1.6 cm, 1.8, and 1.7 cm, 

respectively. All 3570 images were calibrated, and there was a median of 10450.6 matches per 

calibrated image and a density of 48.79 3D densified points per cubic meter. 25,825 images 

(5,165 per reflectance band) were acquired over the course of the multispectral image acquisition 
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mission. The images were used to generate five individual orthomosaics for each reflectance 

band with an X, Y, and Z geolocation RMSE of 2.3 cm, 2.1 cm, and 1.6 cm, respectively. 25,773 

out of the 25,825 were calibrated (99%), and there was a median of 2265.99 matches per 

calibrated image and an average density of 10.72 3D densified points per cubic meter. 

  

Hardware

CPU: AMDRyzen Threadripper 3970X32-Core Processor                                                 
RAM: 256GB                                                                                             
GPU: NVIDIA GeForce RTX3070 (Driver: 30.0.14.7212)

Operating System Windows 10 Education, 64-bit

Image Coordinate System WGS84
OutputCoordinate System WGS84 /UTMzone 11N

Detected Template SODA 3D Oak Savanna
Keypoints Image Scale Full, Image Scale: 1
Advanced: Matching Image Pairs Aerial Grid or Corridor
Advanced: Matching Strategy Use GeometricallyVerified Matching: yes
Advanced: Keypoint Extraction Targeted Number of Keypoints: Custom, Number of Keypoints: 50000

Advanced: Calibration

Calibration Method: Geolocation Based Internal Parameters; 
Optimization: All; External Parameters Optimization: All;       Rematch: 
Custom, yes

Image Scale multiscale, 1 (Original image size, Slow)
Point Density Optimal
Minimum Number of Matches 2
3D Textured Mesh Generation no

DSM and Orthomosaic Resolution 10 [cm/pixel]

DSM Filters
Noise Filtering: yes                                                                             
Surface Smoothing: yes, Type: Medium

Raster DSM Generated: yes; Method: Triangulation; Merge Tiles: yes

Orthomosaic
Generated: yes; Merge Tiles: yes; GeoTIFF Without Transparency: yes 
Google Maps Tiles and KML: no

Raster DTM Generated: yes; Merge Tiles: yes; DTM Resolution: 10 [cm/pixel]

Point Cloud Densification

DSM, Orthomosaic, and Index Details

Processing Options

Processing Options

True Color (RGB)
Initial Processing Options

System Information

Coordinate Systems

Processing Options

Figure 5: Pix4D parameters used for processing the true color imagery. 
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Hardware

CPU: AMDRyzen Threadripper 3970X32-Core Processor                                                     
RAM: 256GB                                                                                             
GPU: NVIDIA GeForce RTX3070 (Driver: 30.0.14.7212)

Operating System Windows 10 Education, 64-bit

Image Coordinate System WGS84
OutputCoordinate System WGS84 /UTMzone 11N

Detected Template RedEdgeMX 5Band
Keypoints Image Scale Full, Image Scale: 2
Advanced: Matching Image Pairs Aerial Grid or Corridor
Advanced: Matching Strategy Use GeometricallyVerified Matching: yes
Advanced: Keypoint Extraction Targeted Number of Keypoints: Custom, Number of Keypoints: 10000

Advanced: Calibration

Calibration Method: Geolocation Based; Internal Parameters 
Optimization: All; External Parameters Optimization: All;       Rematch: 
Auto, no

Rig «RedEdge-M» processing optimize relative rotation using a subset of secondarycameras

Image Scale multiscale, 1 (Original image size, Slow)
Point Density Optimal
Minimum Number of Matches 3
3D Textured Mesh Generation no
Advanced: Image Groups Blue, Green, Red, NIR, Red-edge

DSM and Orthomosaic Resolution 10 [cm/pixel]

DSM Filters
Noise Filtering: no                                                                             
Surface Smoothing: no

Orthomosaic
Generated: yes; Merge Tiles: yes; GeoTIFF Without Transparency: yes 
Google Maps Tiles and KML: no

Radiometric calibration with 
reflectance target yes
Index Calculator: Reflectance 
Map

Generated: yes; Resolution: 1 xGSD(11.2 [cm/pixel]);       Merge 
Tiles: yes

Index Calculator: Indices NDVI

Processing Options

DSM, Orthomosaic, and Index Details

Processing Options

Multispectral
Initial Processing Options

System Information

Coordinate Systems

Processing Options

Point Cloud Densification

Figure 6: Pix4D parameters used for processing the 5-band multispectral imagery. 
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OBIA Species Classification 

Object-based image analysis (OBIA) is a technique used in remote sensing and digital 

image processing to extract information from images. With OBIA, rather than analyzing 

individual pixels, the analysis is performed on image objects or segments, which are groups of 

pixels that share similar characteristics, such as color, texture, or shape. This is achieved by first 

segmenting the image. Segmentation is the process of dividing an image into homogeneous 

regions or segments based on specific criteria such as spectral properties, texture, or contextual 

information (OpenAI, 2024). Next, training samples are provided or generated to train the 

algorithm to extract features. Then, based on the extracted features, the segments are classified 

into different classes or categories using machine learning algorithms such as decision trees, 

support vector machines, or neural networks.  

The multispectral orthomosaic was used as an input for OBIA to classify the tree species 

on the ranch. This analysis required several prerequisite steps, including: (i) the five single-band 

images generated by the multispectral camera were layer-stacked using the image processing 

toolset in the ArcGIS Pro GIS software (Esri, 2023) to create a single five-band multispectral 

composite; (ii) the multispectral composite, along with the canopy height model (CHM)6 and a 

soil-adjusted vegetation index (SAVI)7 were aggregated into a mosaic dataset; (iii) a segmented 

image was generated from the mosaic dataset by using the segment mean shift tool. The segment 

mean shift tool has customizable parameters that affect the segmentation algorithm, including the 

spatial and spectral detail where values range from 1.0 to 20.0. Higher values put more weight on 

 
6 A canopy height model (CHM) is the product of subtracting a digital terrain model (DTM) from a digital surface model 
(DSM). Any positive values in the CHM represent non-ground features such as trees or artificial structures. 
7 A soil-adjusted vegetation index (SAVI) is a vegetation index commonly used in remote sensing and image analysis to 
assess vegetation health and density while compensating for variations in soil brightness, especially in areas with bright 
soil or sparse vegetation cover. 
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tiny nuances within the image (Figure 7 illustrates different parameter values' effects on the 

segmentation results). This tool can also adjust the minimum segment size in pixels, where 

segments smaller than the user's defined size are merged with the closest fitting neighbor. The 

following parameters were used for the segment mean shift tool: spatial detail: 14; spectral 

detail: 18; minimum pixel size: 50.  

The Image Classification Wizard in ArcGIS Pro was then utilized to run a supervised 

classification of the segmented image that was produced via OBIA. The first step within the 

classification wizard is to configure the model. In this step, the user chooses the classification 

method, selects any input datasets to help with classification, and also optionally provides a 

classification schema. The next step in the classification wizard involves using a training sample 

manager, which allows the user to use a pre-defined set of classification training samples or to 

create new training samples by on-screen digitizing. Roughly 30 to 40 training samples were 

Figure 7: Illustrates the impacts of parameter choices on segmentation results (ESRI 2024). 
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created for each of the three dominant tree species as well as for shrubs, shadows, rocks, and 

soil. The classification schema was generated from the provided training samples. The next step 

in the classification wizard is to select the type of classification method to use. Choices include 

ISO Cluster, K-Nearest Neighbor, Maximum likelihood, Random trees, or Support vector 

machine. This research employed the support vector machine (SVM) classifier, a sophisticated 

machine-learning classification technique capable of handling segmented raster inputs and 

standard images. This method was chosen because it exhibits reduced sensitivity to noise, 

correlated bands, and imbalances in the number or size of training samples across different 

classes compared to other available methods. The output generated from this classification 

method is a discrete raster dataset where pixels are aggregated into spectrally similar objects 

based on the defined number of classes from the provided training samples. The raster dataset 

included classes for the three target tree species, shrubs, shadows, rocks, and a catch-all class for 

other land cover that does fit into one of these categories. This raster dataset was filtered to 

include only the target tree species and converted to vector features (polygons), which describe 

the boundaries of the trees and contain species information as attributes.  

ITC Generation 

 An individual tree crown delineation method was attempted to separate trees out at the 

individual level. The method employed is a GIS-based model that utilizes a canopy height model 

as the primary input from which local maxima (i.e., the highest point on a tree crown) are 

determined by identifying the maximum raster value within a 10m x 10m cell. These local 

maxima values are interpreted as treetops representing individual trees. Theissen polygons are 

then generated based on these assumptions to define the extent of the canopy. This method was 

adapted from research conducted by Argomosa et al. (2016)., but while they developed their 
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model in a coniferous plantation, the research in this thesis takes place in a nonuniform stand of 

multitrunked deciduous trees in a mountainous region. They use negative curvature values 

calculated from their CHM to represent the outside of their tree crowns and, in conjunction with 

the Theissen polygons, generate individual tree crowns (ITCs). However, oak tree canopy shapes 

are more complex, making it difficult to calculate true treetops and negative curvature values. 

Thus, a simplified approach was employed where the Theissen polygons were used to split the 

classified tree polygons from the OBIA workflow where multiple trees overlapped. While this 

modified approach is overly simplistic, it is easy to perform and results in more accurate 

polygons than the ones generated from the species classification alone where canopies overlap. 

Estimating and Analyzing Tree Parameters 

The Theissen polygons were used to split the polygons from the OBIA workflow to 

represent individual trees. The resulting ITCs had species information, and canopy perimeter and 

area were automatically calculated from the ITCs' geometry. Canopy width was calculated by 

measuring the width of each polygon in two cardinal directions and computing the average of 

both. The canopy area was multiplied by tree height (CA*H) to give an approximate measure of 

volume. Trees less than 3 m in height and all shrubs were not considered in the ground sample 

and were thus filtered out of the CHM. The local maxima in 10 m x 10 m cells from the CHM 

were converted from raster data to points and then spatially joined to the remotely sensed ITCs to 

represent tree heights for individual trees. The in-situ tree polygons were overlayed on the 

remotely sensed tree polygons, and the data from the remotely sensed trees with the largest 

overlap with the in-situ data were spatially joined to the in-situ attribute table. All the biophysical 

parameters of trees extracted from the processed image data were compared to the in-situ data 

collected during the ground surveys.    
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3.5 Step IV: Model Calibration via Canopy-DBH Relationships and Biomass Estimation 

 Simple regression analyses were conducted again for the remotely sensed tree data to 

determine which biophysical parameter of canopy is the best predictor of DBH. The remotely 

sensed canopy data were correlated with the actual DBH values collected in the field (as stated in 

section 3.3). The canopy-DBH relationships were used to produce multiple estimates of DBH, 

and the subsequent estimates were plugged into the species-specific allometric equations to 

produce AGB estimates. 

3.6 Step V: Accuracy Assessment 

 The remotely sensed tree polygons were overlayed onto the field-based tree polygons, 

and the attribute tables were spatially joined. The attribute table was exported to Microsoft Excel 

file format and analyzed in Excel. The OBIA and ITC results were assessed by issuing an IF 

statement to assign a binary value (0,1) where the species names matched for both the field and 

remotely sensed features. Values with a 1 indicate that the species classification result was 

accurate for that feature, whereas a value of 0 indicates that they do not match. The omission 

error was calculated by subtracting the total number of trees detected from the GIS workflows 

from the total number of trees collected in the field for each tree species. The commission error 

was calculated by first sorting the data by species and then assigning a value of 1 if the classifier 

assigned a species name other than the one stated in the field data. The remotely extracted 

canopy dimensions were assessed by correlating them to their respective field-based canopy 

dimensions. Remotely extracted tree heights were compared to the field-based tree heights and 

ran through a simple linear regression to assess the relationship between the two.  
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Chapter Summary 

This research was conducted to investigate the potential of canopy structure for the 

estimation of DBH. Ground data were collected across multiple field surveys and served as the 

reference values for accuracy assessments of the remotely sensed data. Simple and multiple 

regression analyses were performed to find the best predictor of DBH for each tree species, and 

Pearson’s correlation analysis was used to quantify the statistical significance of each 

relationship (by assessing the p-value). The imagery was processed using the SfM method, and 

the orthomosaics served as the input for a GIS-based workflow to generate polygons 

representing individual trees with species and canopy information. The remotely sensed canopy 

parameters were used to predict DBH and the subsequent DBH estimates were used (in 

conjunction with remotely sensed heights when called for) in species-specific allometric 

equations to calculate estimates for biomass. All of the estimates were compared to observed 

values to evaluate the accuracy of this method. 
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CHAPTER 4 

RESULTS 

 This chapter presents a discussion of the results from the field surveys, statistical 

analyses, GIS workflows, and aboveground biomass (AGB) estimates. The overarching objective 

of this thesis is to test whether canopy can be effectively used to predict tree trunk diameter and, 

subsequently, aboveground biomass. Quality ground truth data is necessary for calibrating and 

evaluating the reliability of the remotely sensed model. This chapter delves into the ground data 

and then juxtaposes the remotely sensed data with the ground truth data. 

4.1 Step I: Field Data Collection 

A total of 215 individual tree samples were collected across the ranch, with DBH values 

ranging from 11cm to 112.5cm, although 90% of the data falls below 66cm. Detailed statistics 

for the sampled trees are aggregated in Table 1. 

 

4.2 Step II: Biomass Calculation and Model Calibration via Regression Analyses 

The results of the simple regression analyses indicate that canopy perimeter, crown area, 

and crown width are moderate to strong predictors of DBH (see Figure 8). All the biophysical 

parameters of tree canopy are moderate to strong predictors of DBH with R-squared8 (R2) values 

 
 
 
 
 
 

  y      

Scientific Name   N DBH (cm)   Height (m)   
Crown 
Width 

      Mean SD   Mean SD   Mean SD 
Quercus douglasii 112 41.13 16.95  9.85 2.86  8.14 3.43 
Quercus wislizeni 39 42.22 18.58  7.82 2.88  7.83 2.80 
Aesculus californica 64 42.90 16.12   8.51 2.67   7.63 2.62 
 

Table 3: Summary statistics of the field data 
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ranging from 0.51 to 0.77. It is important to note that the strongest correlation between tree 

canopy metric and DBH varied by species. For example, canopy perimeter is the strongest 

correlate to DBH for blue oaks (R2 = 0.57) and live oaks (R2 = 0.64), yet tree volume—or 

canopy area multiplied by height (CA*H)—is the strongest correlate to DBH for buckeye trees 

(R2 = 0.77). The results of the multiple regression analyses are not shown.9 

.  

 
8 R2 represents the proportion of variance in the dependent variable that is explained by the independent variable(s). 
9 The multiple regression models did not show significantly improved predictive capability over the simple regression 
models, and the added complexity made it difficult to justify using this approach over a simple regression model. 
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Figure 8: Scatterplots for each of the three tree species illustrating the relationship between four different 
metrics of tree canopy—canopy perimeter, crown area, crown width, and CA*H—and DBH for the tree 
polygons generated from the field surveys. 
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4.3 Step III: GIS-Based Workflows 

OBIA Supervised Classification 

The object-based image analysis (OBIA) workflow implemented in this research 

produced a classified raster dataset, which was subsequently converted to polygons that describe 

the boundaries of the trees and contain species information as attributes (see Figure 9).  

  

Blue Oak Live Oak Buckeye
Blue Oak 97 6 3
Live Oak 11 30 2
Buckeye 2 0 49

Confusion Matrix

Figure 9: Polygons generated from the object-based image analysis workflow for the entire River Ridge 
Ranch property (at left); polygons generated from the OBIA workflow on a 250 m x 315 m sample region 
of the ranch (upper right); confusion matrix showcasing the correctly identified trees as well as the 
commission error (lower right) 
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ITC Delineation 

 The ITC delineation workflow resulted in the identification of 14,986 individual 

polygons with species information. The canopy perimeter, crown area, and crown width 

attributes were populated for the tree polygons feature class using the Calculate Geometry 

function in ArcGIS Pro. Some of the polygons were split in a way such that minuscule areas 

were included that did not truly describe any trees. To mitigate any inaccuracies caused by this 

condition, polygons with an area of less than 10 square meters were filtered out. This filtering 

resulted in 10,811 individual tree polygons being included in the dataset. The tree polygons 

generated during the in-situ field survey were overlayed with the remotely sensed tree polygons, 

and the trees that intersected were used for a comparative analysis (see Figure 10).   

 

 

 

 

Figure 10: Results of the ITC workflow (left) and the field tree polygons overlaying the remotely sensed 
tree polygons whose canopies overlapped (right). 
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4.4 Step IV: Model Calibration via Canopy-DBH Relationships and Biomass Estimation 

  The results of these simple regression analyses on the remotely sensed data are shown in 

Figure 11. Crown area appears to be the overall strongest predictor for all trees; however, the 

correlation between remotely sensed canopy metrics and DBH was shown to be weak to 

moderate, with R2 values ranging from 0.15 to 0.57. Remotely sensed live oak tree canopies had 

the overall strongest relationships with DBH, with R2 values ranging from 0.42 to 0.60. Again, as 

with the field data, the strongest correlate to DBH varied by species, with canopy area 

performing the best for blue oaks (R2 = 0.29) and buckeye trees (R2 = 0.42), and CA*H 

performing the best for live oaks (R2 = 0.60). 
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Figure 11: Scatterplots for each of the three tree species illustrating the relationship between four different 
metrics of tree canopy—canopy perimeter, crown area, crown width, and CA*H—and DBH for the tree 
polygons generated from the algorithms. 
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Aboveground Biomass Results 

The observed aboveground biomass was calculated using the species-specific allometric 

equations and the in-situ field data. These aboveground biomass estimates were calculated using 

the same species-specific allometric equations but with estimated DBH values resulting from the 

statistical relationships between canopy and DBH for both the field and remotely sensed data. All 

aboveground biomass estimates were evaluated against the observed aboveground biomass to 

ascertain the accuracy of each estimate. The top three estimates are summarized in Table 4. The 

model using canopy area to predict DBH performed the best in AGB estimation (81.9% 

accuracy). CA*H performed the worst (73.4% accuracy)—potentially due to the number of 

remotely sensed trees that were not assigned a height value—and thus is not shown in Table 4.  

 

 

 

Note: AGB1 -- uses the DBH estimate calculated from the relationship between Canopy Area and observed  DBH; AGB2 -- uses the 
DBH estimate calculated from the relationship between Canopy Width and observed DBH; AGB3 -- uses the DBH estimate from 
the relationship between CA*H and observed DBH

Species Name AGB
Blue Oak 129,694.14                   
Buckeye 77,515.54                     
Live Oak 37,600.82                     
Totals 244,810.50                   

Observed AGB

AGB1 AGB2 AGB3

Blue Oak 104,696.84          115,817.12          117,688.63          
Buckeye 72,536.26           70,613.09           69,305.27           
Live Oak 33,637.79           34,343.79           34,305.06           

Total 210,870.90         220,774.00         221,298.96         
Accuracy 86.1% 90.2% 90.4%

Field Measured Canopy-Based Estimates
AGB1 AGB2 AGB3

107,925.39           106,886.17           102,867.54           
58,095.56            55,584.09            52,845.98            
34,464.38            30,752.07            31,909.81            

200,485.33          193,222.33          187,623.34          
81.9% 78.9% 76.6%

Remotely Sensed Canopy-Based Estimates

Table 4: The observed AGB in kilograms for each species as well as the total for all sampled trees (top middle), the 
aboveground biomass estimates in kilograms using three different methods of estimation for DBH for the field data as 
well as the overall accuracies of the estimates (bottom left), and the aboveground biomass estimates in kilograms using 
three different methods of estimation for DBH for the remotely sensed data as well as the overall accuracies of the 
estimates (bottom right) 
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4.5 Step V: Accuracy Assessment of Remotely Sensed Biometrics 

Remotely Extracted Tree Height Results 

There were 215 total sampled trees in the field surveys ranging from 3 m to 21 m in 

height, but only 200 individual trees were detected through the GIS-based workflow, which 

overlapped the trees sampled in situ. Of the 200 polygons generated from the GIS workflow 

described in Sections 3.4 and 3.5 of the previous chapter, only 148 were assigned height values 

using the cell size of 10 m x 10 m. Figure 12 shows the relationship between the remotely sensed 

tree height estimates and the reference heights from the ground data. The RMSE of the estimate 

was 3.14 m.  

OBIA and ITC Results 

An accuracy assessment was carried out in Excel to quantify the reliability of the OBIA 

and ITC workflows. In total, 81.9% of the trees were correctly identified, with blue oaks—the 

dominant tree species on the ranch—having the greatest accuracy (86.6%), followed by live oak 

(76.9%) and buckeye (76.6%). The algorithms employed resulted in a total commission error 

Figure 12: The relationship between remotely sensed tree height estimates and the 
observed tree heights. The R2 and trendline indicate a weak positive relationship. 
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(the number of trees detected by the algorithms but were not found to exist based on in-situ 

observation) of 12%, with live oak having the greatest commission error (30.2%), followed by 

blue oaks (8.5%), and buckeyes (3.9%). However, buckeye trees had a much larger commission 

error than is reflected in the comparison with the field data (which will be discussed in further 

detail in section 5.3). The overall accuracy of the OBIA and ITC workflows for all trees is 

84.8%, with blue oaks having the highest overall accuracy (89%), followed by buckeyes (85.2%) 

and live oaks (73.2%). These data are summarized in Table 5. Moreover, a correlation matrix was 

generated to test the relationship between the field polygons’ attributes and remotely sensed 

polygons’ attributes (see Table 6). All of the biophysical parameters exhibit moderate to strong R 

values10, but only the canopy area has a moderate R2 value. 

 

 

 

 
10 “R” represents the correlation coefficient, which measures the strength and direction of the linear relationship 
between two variables. It ranges from -1 to 1. 

Nt No Nc r(%) p(%) F1(%)
Blue Oak 97 15 9 86.6% 91.5% 89.0%
Live Oak 30 9 13 76.9% 69.8% 73.2%
Buckeye 49 15 2 76.6% 96.1% 85.2%

All trees 176 39 24 81.9% 88.0% 84.8%

             
  p

Note: Nt - represents the total number of trees detected that exist in the field; No - the number 
of trees ommitted by the algorithm; Nc - the number of trees that were falsely identified; r - 
represents the tree detection rate; p - represents the precision of detected trees; and F1 - 
represents the overall accuracy taking both omission and commission in consideration.

Table 5: Accuracy Assessment for the detection of individual trees for the three 
dominant tree species 

Height Perimeter Area Width CA*H
R 0.533 0.477 0.667 0.614 0.631

R-sq 0.284 0.227 0.445 0.377 0.398

   
Table 6: Correlation matrix illustrating the relationships between the field-
based and remotely extracted biometrics.  
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CHAPTER 5 

DISCUSSION 

 The primary goal of this thesis was to develop and evaluate a method for using remotely 

sensed variables in field-derived, species-specific allometric equations to quantify aboveground 

biomass. This thesis consisted of a number of steps: (1) the collection of in-situ ground truthing 

data; (2) biomass calculation and model calibration with regression analyses in order to predict 

DBH from tree canopy dimensions; (3) photogrammetry and GIS-based workflows to produce 

remotely sensed parameters including tree species, height, and biophysical metrics of canopy at 

the individual tree level; (4) model calibration via regression analyses using  the remotely sensed 

canopy variables and in-situ  measurements of DBH, followed by biomass estimation; (5) 

accuracy assessment of the remotely sensed data (generated in step 3) and biomass estimates 

(generated in step 4). 

The theory examined here is that canopy-based DBH estimates can accurately assess 

AGB, thus demonstrating greater efficiency and cost-effectiveness than conventional field 

methods. The AGB estimates that this author derived from the canopy-DBH relationships 

performed reasonably well, with the best model (using crown area) only underestimating AGB 

by 18.1%. This result far exceeded this author’s initial expectations, particularly in light of the 

fact that AGB and carbon content are often overestimated in California (Badgley et al., 2021), 

and that other biomass estimation models are commonly used beyond their initial scope leading 

to errors reportedly as high as 240% (Weiskittel et al., 2017). As it stands, the model explored in 

this thesis can quantify key forest parameters with a reasonable degree of accuracy. However, the 

improper delineation of individual tree crowns (ITCs) where canopies overlap certainly 

decreased the overall reliability of the model. Recognizing this limitation, one way to increase 
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the reliability of this model is to implement an accurate method for delineating tree crowns. The 

object-based image analysis, in and of itself, generated an output that can be converted to 

polygons representing individual trees with accurate species information and canopy data where 

tree canopies did not overlap. This is a promising finding as over half of the world's wooded 

areas have a canopy cover of less than 50% (Mlambo et al. 2017). 

This study found that tree canopy is a moderate to strong predictor of DBH.  This insight 

suggests potential pathways for enhancing the efficiency and accuracy of forest inventories. Thus 

study further found that canopy area is the best metric to use for the estimation of DBH 

compared to canopy perimeter, crown width, and CA* H. Canopy area provides a more 

comprehensive understanding of the overall canopy structure as canopy shapes do not always 

conform to a predictable  circular or convex shape but can take on elliptical or more complex 

forms. Canopy area also remained relatively consistent in both the in-situ and RS data, while 

canopy perimeter, crown width, and CA*H vary moderately between the two datasets. 

Leveraging canopy area information and employing automated techniques to delineate trees at 

the individual level offers potential for gathering inventory data through sUAS remote sensing. 

The techniques employed in this thesis can be used to successfully collect forest parameters in 

wooded lands where tree canopies do not overlap. 

5.1 Comparison With Existing Studies 

Three previous studies have explored the use of drone-based tree measurements for the 

extraction of key forest parameters (e.g. tree species, individual tree crowns and canopy 

dimensions, canopy-based estimates of DBH, and AGB). In general, the results achieved in this 

thesis are comparable to the other studies with some differences attributed to environmental 

factors such as canopy complexity. In the study by Iizuka et al. (2017), tree canopy was found to 
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be a strong predictor of DBH. Their study area consisted of a Japanese cypress forest, a 

coniferous forest with a closed canopy structure. Despite the constraints of ground exposure 

caused by the closed canopy, the RMSE of their remotely extracted tree heights was a reasonable 

1.71 m, but the correlation between their observed tree heights and extracted tree heights was 

poor (R2 = 0.208). DBH showed a strong correlation with both canopy width (R² = 0.7786) and 

canopy area (R² = 0.7923) across a range of DBH values from 11 to 58 cm. The findings of this 

thesis compare well with Iizuka’s, especially when considering the higher complexity of the 

broadleaved canopies studied. The tree heights generated from the field data have a slightly 

better correlation (R2 = 0.28) with the field heights compared to Iizuka; however, the RMSE is 

much higher at 3.14 m, thus indicating that the SfM method has poor predictive performance for 

tree heights.  

The open canopy structure of River Ridge Ranch should have improved the digital 

elevation products and resultant CHM when juxtaposed to Iizuka’s closed canopy structure 

cypress forest, yet the RMSE is almost twice as large. This error could be due to the manner in 

which tree heights were extracted (explained in section 3.4). The method to extract tree heights 

may need to be adjusted to yield better tree height estimates. This thesis found that tree canopy is 

highly correlated with DBH for the field data, but only moderately so for the remotely sensed 

data. It also found canopy area to be the strongest correlative to DBH for the remotely sensed 

data, as well as the most consistent parameter between the in-situ and remotely sensed data. This 

strongly suggests that canopy area may be the best biophysical parameter of the tree canopy to 

use for DBH estimation. On the other hand, the individual tree crown (ITC) delineation method 

used in this thesis was found to be oversimplified, and the results were thus suboptimal. This 

likely significantly impacted the DBH-canopy relationship for the remotely sensed data, which 
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could explain the lower predictive power of most of the remotely sensed canopy parameters 

compared to Iizuka et al. (2017). For this reason, further exploration of this method should focus 

on improving ITC delineation results. 

 Xu et al. (2020) successfully classified the dominant tree species in a subtropical forest 

containing a mix of coniferous and broadleaved trees in southwest China using multispectral 

aerial imagery and structural information11. When looking at the individual tree level, their 

classifier had an overall accuracy of 66.3%. The SVM classifier used in this thesis had an overall 

accuracy of 84.8%. The higher accuracy presented in this thesis may be due to the lower 

complexity of the landscape. While the referenced authors’ study site was characterized by a 

closed canopy structure and eight dominant tree species including both coniferous and 

broadleaved trees, the study area used for this thesis only has three dominant tree species and an 

overall open canopy structure. This finding indicates that high-resolution multispectral imagery 

can be used to accurately classify tree species for an open canopy forest/woodland but may have 

a limited applicability to a more complex, closed-canopy landscape. 

 The research of Jones et al. (2020) attempted to estimate mangrove biomass using sUAS-

derived tree biometrics. While their study does not offer any results for comparison with this 

thesis, their research suggested a promising new approach for biomass estimation assuming that 

the relationship between tree canopy, height, and DBH can be better defined. This thesis 

successfully defined statistically significant canopy-DBH relationships between the three 

dominant tree species on River Ridge Ranch, and found that estimates of aboveground biomass 

(AGB) that are based on the demonstrated canopy-DBH correlation can reach accuracies slightly 

better than 80%. 

 
11 Structural information refers to metrics such as tree height and canopy dimensions that can be extracted at the 
individual tree level. 
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5.2 Limitations 

Ground Truth Data 

 Some limitations were identified that are associated with the ground truth data used in 

this thesis. The reliability of the tree height data collected in the field has not yet been assessed. 

Moreover, the in-situ dataset used in this thesis was initially intended to serve as a broad-based 

inventory of not only live trees, but also   grasses, shrubs, and dead trees at River Ridge Ranch—

over 600 features in all.  To reduce the effect of this limitation, features other than live trees have 

largely been filtered out leaving a total of 215 remaining features in the in-situ dataset. Some of 

the dead trees were difficult to filter out, posing a problem as it could lead to false omission 

errors. The field surveys also took place across several years and varying seasons, introducing 

errors. For example, the tree polygons from the field survey sometimes varied from the tree 

canopies identified in the sUAS imagery because growth had occurred in the interval of time that 

had passed between the field survey and the sUAS imaging missions. If the tree canopies do not 

match up, there is an elevated potential for error as the relationship between canopy (as derived 

from the sUAS imagery) and DBH is the primary relationship explored in this thesis. Efforts 

were taken to minimize this error by manually editing the polygons that comprise the field data 

so that they align better with the canopies visible in the aerial imagery. An improved sampling 

scheme could have eliminated some of the biases introduced in this thesis. 

Digital Elevation Products 

 A crucial aspect when estimating tree height from 3D models built with the SfM method 

is to generate a DTM of dependable quality. The heights of surface objects are calculated by 

subtracting the pure terrain data from a DSM, so if the DTM is inaccurate, the heights of surface 

objects will be inaccurate. Several studies have shown that Structure from Motion is comparable 

to LiDAR in flatter terrain with a sparse distribution of surface targets with appreciable height 
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(Wallace et al. 2016; Goodbody et al. 2017; Mlambo et al. 2017; Iglhaut et al. 2019). However, 

when the terrain and land cover becomes more complex, especially if tree canopies begin to 

overlap, the reliability of SfM deteriorates. Dense tree canopy cover can obstruct the view of the 

ground surface. The occlusion of the ground surface makes it very difficult to identify ground 

points, and in such cases interpolating and accurately reconstructing the terrain is particularly 

challenging. This limitation can lead to gaps or over-interpolation of the DTM by the SfM 

software, rendering SfM feasible only in areas with an open canopy structure (i.e., less than 50% 

cover). This condition is observed in the DTM and resulting CHM generated for this thesis. The 

areas that exhibited the lowest accuracy were tributary stream channels with dense overlapping 

tree canopies. However, areas of the ranch with open canopies tended to display more accurate 

height and canopy values. Considering that more than half of the world's wooded lands have less 

than 50% canopy cover (Mlambo et al. 2017), the above finding suggests that there are many 

regions where SfM can be used successfully. 

Object-Based Image Analysis 

OBIA offers several advantages over pixel-based analysis, including better handling of 

spatial and contextual information, reduced sensitivity to noise, and improved accuracy in feature 

extraction and classification (OpenAI 2024). Additionally, and more notably, it yields an output 

that can be readily converted to polygons from which individual tree crowns can be extracted—

at least where individual tree canopies do not overlap. The OBIA workflow adopted for this 

thesis proved to be an excellent tool based on its ease of use and accuracy, and ArcGIS Pro's 

imagery classification wizard guides users through the entire process. The species classification 

results of the OBIA workflow were 84.8% accurate. Nonetheless, some critical factors that 

should be considered when classifying tree species using OBIA were uncovered. Firstly, tree 
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phenology plays a vital role in the algorithm's ability to classify tree species. For example, blue 

oaks are winter-deciduous, interior live oaks are evergreen, and buckeyes are summer-deciduous. 

The images used for analysis within this thesis were acquired in June (early summer) when the 

buckeye trees' leaves tend to start browning and dropping. Consequently, the buckeyes' canopies 

are not full, and the leaves are spectrally similar to the surrounding bare ground. The gaps in 

buckeye trees' canopies and the browning leaves confused the classification algorithm and 

resulted in neighboring areas of bare ground being incorporated into the buckeye class. A few 

large areas of ground were incorrectly identified as buckeye and had to be manually filtered 

out—although this could be done automatically by using the CHM to filter out regions less than 

3 meters in height. Another important consideration with object-based image analysis is that 

reliable training data is vital for creating an accurate model. With object-based image analysis, it 

is preferable that the training samples are not spectrally pure; instead, they should denote the 

entirety of an object including pixels that have spectral signatures that vary from that of the 

object of interest in the scene. Also, it is essential to use approximately the same number of 

samples per training class; oversaturating one class can affect the model's accuracy. One final 

thing to ensure is that a thorough and representative set of bare ground samples is obtained as 

this is an essential factor in evaluating the accuracy of the classification results. 

The OBIA workflow in ArcGIS Pro showed a great deal of promise in classifying the 

dominant tree species with five-band multispectral imagery on River Ridge Ranch. The 

classification results could be improved by incorporating more reliable CHM data derived from, 

for example, a LiDAR point cloud, using more training samples per class, and using an image 

where buckeye trees are not shedding their leaves. The OBIA and segmentation method alone 
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demonstrate considerable potential for generating individual tree polygons with species attributes 

and canopy data in areas with an open tree canopy cover.  

ITC Delineation 

 Individual tree canopy (ITC) delineation is necessary to partition a forest's canopy into 

individual tree crowns, thereby enabling quantitative analysis and mapping of tree-level 

attributes and spatial patterns within forested areas. Previous research has explored several 

methods, but most appear tailored for coniferous trees with uncomplicated, convex canopy 

shapes. Watershed segmentation is presently the most popular individual tree segmentation 

algorithm, but it often results in over-segmentation and can be complicated to carry out (Qin et 

al., 2022). The method used in this thesis was adapted from a technique that uses negative 

curvature values from a LiDAR-derived CHM to delineate individual tree boundaries (Argomosa 

et al. 2016). Their model was developed using a stand of trees in a coniferous plantation. One 

major limitation of using plantations is their uniform size, which is typically not representative of 

natural forest ecosystems. Additionally, coniferous trees have a conical shape, resulting in only 

one true tree top and making it easier to detect negative curvature values. In contrast, oaks have 

more complex shapes making it challenging to identify a single true tree top and utilize negative 

curvature values effectively. Oak tree canopy shape is vastly different and far more complicated 

than the convex shape of coniferous tree canopies. Therefore, the methodology was modified in 

that the Thiessen polygons were simply used to split tree canopies where multiple tree canopies 

overlapped. While this modified approach is overly simplistic, it is easy to perform and results in 

more accurate polygons than the ones generated from the species classification alone in areas 

where canopies overlap. It is important to emphasize that this modified approach is far from 

optimal and has resulted in polygons with highly inaccurate shapes where the canopy cover is 



58 
 

dense. Areas with an open canopy structure exhibited far more accurate polygons, which resulted 

solely from the OBIA workflow. 

The study area mainly consists of open canopy woodland, and most of the trees surveyed 

in the field and used for the accuracy assessment were trees whose canopies did not overlap. This 

resulted in an accuracy assessment that reflects the algorithm's ability to effectively map tree 

species and canopy metrics for open canopy woodlands; however, based on visual inspection, the 

algorithm performs poorly in regions with a closed canopy structure.  

5.3 sUAS and SfM for Forestry Applications 

 SfM holds a great deal of promise for forestry and research applications, and the use of 

sUAS for image acquisition missions offers the added advantage of high flexibility. The 

capability for high temporal resolution can be used to carry out increased-frequency remote 

sensing surveys to account for phenological changes. Operating an sUAS for forestry tasks 

includes several vital steps: mission planning, setting up components, flying the UAV, and 

downloading data. Thanks to modern sUAS being equipped with mission planning software, 

image acquisition missions can be largely autonomous, minimizing the need for constant user 

intervention and reducing the potential for human error. The rapid learning curve of 

contemporary sUAS flight planning and management applications makes them highly useful for 

forest monitoring. The commercial sUAS market has significantly reduced the knowledge gap 

between experienced users and novices by advancing fully autonomous sUAS operation. 

Moreover, the processing of sUAS imagery using the SfM algorithm can be readily automated 

with little required user input. Batch scripts allow users to pre-define calculation parameters and 

execute them sequentially. SfM photogrammetry therefore presents an easily accessible and 

highly versatile approach to obtaining detailed 3D terrain and land cover data. Through SfM, 
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ordinary forestry professionals gain the ability to perform real-time data analysis with minimal 

investments in both hardware and software. Typically, the expenses associated with buying, 

operating, and upkeeping an sUAS are comparatively much lower than those incurred with 

piloted aerial imaging missions, or regularly procuring high-resolution satellite imagery. Using 

the SfM method with sUAS-acquired imagery demonstrates great potential as a low-cost and 

accurate remote sensing method for forest parameter acquisition and biomass calculation. 

5.4 Conclusions 

The current state of biomass estimation faces many challenges in terms of labor, 

efficiency, cost, technical expertise, accuracy, and precision. The ability to effectively measure 

forest parameters, however, is a high priority for many land managers. As such, much research 

has investigated the use of remote sensing to quantify forest structure to decrease costs, alleviate 

labor, and increase efficiency (Iizuka et al. 2017; Jones et al. 2020; Xu et al. 2020). This thesis 

developed a procedure to use remotely sensed canopy biometrics to indirectly quantify AGB in 

an oak woodland via DBH estimates. The procedures outlined herein were used to remotely 

extract various metrics of tree canopy and successfully quantify aboveground biomass within a 

reasonable margin of error. Using SfM, researchers can generate outputs that can be used to 

accurately extract canopy and height data for wooded lands, particularly those with an open 

canopy structure. 

This thesis sought to evaluate the efficacy of high-resolution aerial imagery and SfM 

photogrammetry to quantify forest parameters—specifically aboveground biomass. This was 

achieved via statistical analysis, remote sensing and digital image processing, and GIS-based 

techniques to classify tree species and extract biophysical parameters at the individual tree level. 

The statistical analyses performed by this author indicate that canopy size has a strong 
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correlation to DBH, and derivative estimates of DBH can be used in species-specific allometric 

equations to approximate aboveground biomass. The polygons produced from the GIS-based 

workflows match up well with the field-derived polygons. The species classification workflow 

exhibited a high degree of accuracy (compared with the field data) apart from the image 

classification errors associated with the unusual buckeye tree phenology. One of the benefits of 

sUAS and SfM is the flexibility to plan image acquisition missions at a frequency to address 

phenological changes. It is suggested that any follow-up research should address tree phenology 

by using a winter or spring image for the object-based image classification. Ideally, more 

emphasis should be placed on ITC delineation, as it is crucial for accurately extracting canopy 

metrics; however, it is an aspect that is highly technical and requires a great deal of research, 

time, and effort. A field sampling scheme must be clearly defined to address sampling biases and 

account for potential confounding variables. Notwithstanding these limitations, this thesis 

demonstrates the potential for using high-resolution sUAS imagery to extract biophysical 

parameters of tree canopy for use in estimating aboveground biomass, particularly in open 

canopy woodlands. 
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Figure 2: This image was acquired during another ground survey near the bottom of the hillside. It shows off the topography 
and distribution of trees on the ranch. 

Figure 1: This image was taken during a ground survey in the higher elevations of the ranch. It shows the steep topography 
and general landscape of the ranch, as well as the pasture located in the valley. 
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Figure 3: 3D representation of the landscape of River Ridge Ranch. Shows the distribution of trees sampled for the field data and gives an idea of the ranch’s 
terrain. Bottom left shows the orientation of the 3D model. 



65 
 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX B 

  



66 
 

Generated with PIX4Dmapper version 4.7.5 
Important: Click on the different icons for: 

   Help to analyze the results in the Quality Report 
   Additional information about the sections 

 Click here for additional tips to analyze the Quality Report 

Summary  
Project 2022-06-15_all 
Processed 2022-06-28 09:31:07 
Camera Model Name(s) S.O.D.A._10.6_5472x3648 (RGB) 
Average Ground Sampling Distance (GSD) 4.12 cm / 1.62 in 

Quality Check  
 Images median of 50000 keypoints per image  

 Dataset 3570 out of 3570 images calibrated (100%), all images enabled, 2 blocks  

 Camera 
Optimization 0.94% relative difference between initial and optimized internal camera parameters  

 Matching median of 10450.6 matches per calibrated image  

 Georeferencing yes, no 3D GCP  

  
Number of Calibrated Images out of 3570 
Number of Geolocated Images out of 3570 

Quality Report 

https://cloud.pix4d.com/knowledge-base?topic=HELP_REPORT_FULL_TIPS&version=4.7.5&lang=en_US
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Calibration Details  

Initial Image Positions  

 

Figure 2: Top view of the initial image position. The green line follows the position of the images in time starting from the large 
blue dot. 

Computed Image/GCPs/Manual Tie Points Positions   
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Figure 3: Offset between initial (blue dots) and computed (green dots) image positions as well as the offset between the GCPs initial positions 
(blue crosses) and their computed positions (green crosses) in the top-view (XY plane), front-view (XZ plane), and side-view (YZ plane). Dark 
green ellipses indicate the absolute position uncertainty of the bundle block adjustment result. 

Uncertainty ellipses 1000x magnified 
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Absolute camera position and orientation uncertainties  
 X [m] Y [m] Z [m] Omega [degree] Phi [degree] Kappa [degree] 
Mean 0.007 0.009 0.007 0.004 0.003 0.003 
Sigma 0.002 0.001 0.001 0.001 0.001 0.001 

 

Number of 2D Keypoint Observations for Bundle Block Adjustment 38761002 
Number of 3D Points for Bundle Block Adjustment 15278462 
Mean Reprojection Error [pixels] 0.151 

Internal Camera Parameters S.O.D.A._10.6_5472x3648 (RGB). Sensor 
Dimensions: 13.133 [mm] x 8.755 [mm]  
EXIF ID: S.O.D.A._10.6_5472x3648 

 Focal 
Length 

Principal 
Point x 

Principal 
Point y R1 R2 R3 T1 T2 

Initial Values 
4430.420 
[pixel] 
10.633 [mm] 

2725.000 
[pixel] 
6.540 [mm] 

1811.670 
[pixel] 
4.348 [mm] 

0.033 -
0.209 0.315 0.000 0.000 

Optimized Values 
4388.388 
[pixel] 
10.532 [mm] 

2761.017 
[pixel] 
6.626 [mm] 

1820.488 
[pixel] 
4.369 [mm] 

0.038 -
0.238 0.342 0.001 0.000 

Uncertainties 
(Sigma) 

0.017 [pixel] 
0.000 [mm] 

0.027 [pixel] 
0.000 [mm] 

0.018 [pixel] 
0.000 [mm] 0.000 0.000 0.000 0.000 0.000 

Bundle Block Adjustment Details 
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The correlation between camera internal 
parameters determined by the bundle adjustment. 
White indicates a full correlation between the 
parameters, ie. any change in one can be fully 
compensated by the other. Black indicates that the 
parameter is completely independent, and is not 
affected by other parameters. 

 

 Number of 2D Keypoints per Image Number of Matched 2D Keypoints per Image 
Median 50000 10451 
Min 50000 67 
Max 50000 26099 
Mean 50000 10857 

3D Points from 2D Keypoint Matches  
 Number of 3D Points Observed 
In 2 Images 11452545 
In 3 Images 2181845 

 
In 4 Images 762446 
In 5 Images 345542 
In 6 Images 185438 
In 7 Images 110448 
In 8 Images 69535 

F 

C 0 x 

C 0 y 

R1 

R2 

R3 

T1 

T2 

2 D Keypoints Table 

The number of Automatic Tie Points (ATPs) per pixel, averaged over all images 
of the camera model, is color coded between black and white. White indicates 
that, on average, more than 16 ATPs have been extracted at the pixel location. 
Black indicates that, on average, 0 ATPs have been extracted at the pixel 
location. Click on the image to the see the average direction and magnitude of 
the reprojection error for each pixel. Note that the vectors are scaled for better 
visualization. The scale bar indicates the magnitude of 1 pixel error. 
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In 9 Images 46317 
In 10 Images 31926 
In 11 Images 22778 
In 12 Images 16261 
In 13 Images 12093 
In 14 Images 9012 
In 15 Images 6761 
In 16 Images 5228 
In 17 Images 4008 
In 18 Images 3107 
In 19 Images 2500 
In 20 Images 1945 
In 21 Images 1582 
In 22 Images 1299 
In 23 Images 962 
In 24 Images 823 
In 25 Images 638 
In 26 Images 510 
In 27 Images 427 
In 28 Images 357 
In 29 Images 310 
In 30 Images 281 
In 31 Images 214 
In 32 Images 188 
In 33 Images 146 
In 34 Images 135 
In 35 Images 100 
In 36 Images 101 
In 37 Images 78 
In 38 Images 73 
In 39 Images 56 
In 40 Images 54 
In 41 Images 42 
In 42 Images 41 
In 43 Images 23 
In 44 Images 33 
In 45 Images 29 
In 46 Images 25 
In 47 Images 30 
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In 48 Images 18 
In 49 Images 21 
In 50 Images 10 
In 51 Images 15 
In 52 Images 15 
In 53 Images 15 
In 54 Images 12 
In 55 Images 5 
In 56 Images 9 
In 57 Images 9 
In 58 Images 4 
In 59 Images 1 
In 60 Images 4 
In 61 Images 2 
In 62 Images 5 
In 63 Images 5 
In 64 Images 1 
In 65 Images 3 
In 66 Images 2 
In 67 Images 4 
In 68 Images 1 
In 70 Images 1 
In 71 Images 1 
In 72 Images 2 
In 73 Images 1 
In 76 Images 2 
In 77 Images 1 
In 88 Images 1 
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2D Keypoint Matches  

 

 
25 222 444 666 888 1111 1333 1555 1777 2000 

Number of matches 
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Figure 5: Computed image positions with links between matched images. The darkness of the links indicates the number of matched 2D 
keypoints between the images. Bright links indicate weak links and require manual tie points or more images. 

 

Absolute Geolocation Variance  
Min Error [m] Max Error [m] Geolocation Error X [%] Geolocation Error Y [%] Geolocation Error Z [%] 
- -1.07 0.00 0.00 0.00 
-1.07 -0.86 0.00 0.00 0.00 
-0.86 -0.64 0.00 0.00 0.00 
-0.64 -0.43 0.00 0.00 0.00 
-0.43 -0.21 0.00 0.00 0.00 
-0.21 0.00 51.29 50.70 49.80 
0.00 0.21 48.71 49.30 50.20 
0.21 0.43 0.00 0.00 0.00 
0.43 0.64 0.00 0.00 0.00 
0.64 0.86 0.00 0.00 0.00 
0.86 1.07 0.00 0.00 0.00 
1.07 - 0.00 0.00 0.00 
Mean [m]  0.000003 -0.000049 0.000169 
Sigma [m]  0.016025 0.018006 0.017285 
RMS Error 
[m]  0.016025 0.018006 0.017286 
Min Error and Max Error represent geolocation error intervals between -1.5 and 1.5 times the maximum accuracy of all the images. Columns 

X, Y, Z show the percentage of images with geolocation errors within the predefined error intervals. The geolocation error is the difference 
between the initial and computed image positions. Note that the image geolocation errors do not correspond to the accuracy of the observed 
3D points. 

Relative Geolocation Variance  
Relative Geolocation Error Images X [%] Images Y [%] Images Z [%] 
[-1.00, 1.00] 96.44 95.74 96.13 
[-2.00, 2.00] 99.72 99.05 99.94 
[-3.00, 3.00] 99.92 99.72 99.94 
Mean of Geolocation Accuracy [m] 0.034068 0.034068 0.035161 
Sigma of Geolocation Accuracy [m] 0.007672 0.007672 0.011773 

Images X, Y, Z represent the percentage of images with a relative geolocation error in X, Y, Z. 

Geolocation Orientational Variance RMS [degree] 

Geolocation Details 
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Omega 1.327 
Phi 1.046 
Kappa 2.022 
Geolocation RMS error of the orientation angles given by the difference between the initial and computed image orientation 

angles.  

 

Hardware 
CPU: AMD Ryzen Threadripper 3970X 32-Core 
Processor RAM: 256GB 
GPU: NVIDIA GeForce RTX 3070 (Driver: 30.0.14.7212) 

Operating 
System 

Windows 10 Education, 64-bit 

Coordinate Systems  
Image Coordinate System WGS 84 
Output Coordinate System WGS 84 / UTM zone 11N 

Processing Options  
Detected Template    SODA 3D Oak Savanna* 
Keypoints Image Scale Full, Image Scale: 1 
Advanced: Matching Image Pairs Aerial Grid or Corridor 
Advanced: Matching Strategy Use Geometrically Verified Matching: yes 
Advanced: Keypoint Extraction Targeted Number of Keypoints: Custom, Number of Keypoints: 50000 

Advanced: Calibration 
Calibration Method: Geolocation Based 
Internal Parameters Optimization: All 
External Parameters Optimization: All 
Rematch: Custom, yes 

 

Image Scale multiscale, 1 (Original image size, Slow) 
Point Density Optimal 
Minimum Number of Matches 2 
3D Textured Mesh Generation no 
LOD Generated: no 
Advanced: Image Groups group1 
Advanced: Use Processing Area no 
Advanced: Use Annotations no 

Initial Processing Details 

System Information 

Point Cloud Densification details 

Processing Options 
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Time for Point Cloud Densification 17h:02m:18s 
Time for Point Cloud Classification NA 
Time for 3D Textured Mesh Generation NA 

Results  
Number of Processed Clusters 3 
Number of Generated Tiles 156 
Number of 3D Densified Points 2096788613 

Average Density (per m3) 48.79 

 

DSM and Orthomosaic 
Resolution 

10 [cm/pixel] 

DSM Filters 
Noise Filtering: yes 
Surface Smoothing: yes, Type: 
Medium 

Raster DSM 
Generated: yes 
Method: Triangulation 
Merge Tiles: yes 

Orthomosaic 

Generated: yes  
Merge Tiles: yes 
GeoTIFF Without Transparency: 
yes 
Google Maps Tiles and KML: no 

Raster DTM Generated: yes 
Merge Tiles: yes 

DTM Resolution 10 [cm/pixel] 
Time for DSM Generation 17m:50s 
Time for Orthomosaic 
Generation 

01h:29m:48s 

Time for DTM Generation 04h:25m:14s 
Time for Contour Lines 
Generation 

00s 

Time for Reflectance Map 
Generation 

00s 

Time for Index Map 
Generation 

00s 

 

DSM, Orthomosaic and Index Details 

Processing Options 
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Generated with PIX4Dmapper version 4.7.5 

Important: Click on the different icons for: 
   Help to analyze the results in the Quality Report 
   Additional information about the sections 

 Click here for additional tips to analyze the Quality Report 
Summary  

Project Merged 
Processed 2022-07-18 09:57:12 

Camera Model 
Name(s) 

RedEdge-M_5.5_1280x960 (Blue), RedEdge-M_5.5_1280x960 (Green), RedEdge-
M_5.5_1280x960 (Red), RedEdge-M_5.5_1280x960 (NIR), RedEdge-M_5.5_1280x960 (Red 
edge) 

Rig name(s) «RedEdge-M» 
Average Ground 
Sampling Distance 
(GSD) 

11.21 cm / 4.42 in 

Time for Initial 
Processing (without 
report) 

01h:26m:58s 

Quality Check  

 Images median of 10000 keypoints per image  

 Dataset 25773 out of 25825 images calibrated (99%), 40 images disabled, 2 blocks  

 Camera 
Optimization 0.07% relative difference between initial and optimized internal camera parameters  

 Matching median of 2265.99 matches per calibrated image  

 Georeferencing yes, no 3D GCP  

Calibration Details  
Initial Image Positions  

  
Number of Calibrated Images out of 25865 
Number of Geolocated Images out of 25865 

Quality Report 

https://cloud.pix4d.com/knowledge-base?topic=HELP_REPORT_FULL_TIPS&version=4.7.5&lang=en_US
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Figure 2: Top view of the initial image position. The green line follows the position of the images in time starting from the large 
blue dot. 
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Figure 3: Offset between initial (blue dots) and computed (green dots) image positions as well as the offset between the GCPs initial 
positions (blue crosses) and their computed positions (green crosses) in the top-view (XY plane), front-view (XZ plane), and side-view (YZ 

Computed Image/GCPs/Manual Tie Points Positions 

Uncertainty ellipses 500x magnified 
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plane). Red dots indicate disabled or uncalibrated images. Dark green ellipses indicate the absolute position uncertainty of the bundle block 
adjustment result. 

Absolute camera position and orientation uncertainties  

 X [m] Y [m] Z [m] Omega [degree] Phi [degree] Kappa [degree] 
Mean 0.010 0.010 0.007 0.004 0.004 0.003 
Sigma 0.001 0.001 0.001 0.002 0.002 0.003 

 

Number of 2D Keypoint Observations for Bundle Block Adjustment 16420551 
Number of 3D Points for Bundle Block Adjustment 5763384 
Mean Reprojection Error [pixels] 0.092 

Internal Camera Parameters 

RedEdge-M_5.5_1280x960 (Blue). Sensor Dimensions: 4.800 [mm] x 3.600 [mm]  
EXIF ID: RedEdge-M_5.5_1280x960 

 Focal 
Length 

Principal 
Point x 

Principal 
Point y R1 R2 R3 T1 T2 

Initial Values 
1445.135 
[pixel] 
5.419 [mm] 

639.853 
[pixel] 
2.399 [mm] 

490.589 
[pixel] 
1.840 [mm] 

-
0.101 0.158 -

0.056 0.001 -
0.001 

Optimized Values 
1444.074 
[pixel] 
5.415 [mm] 

640.922 
[pixel] 
2.403 [mm] 

488.425 
[pixel] 
1.832 [mm] 

-
0.097 0.133 0.001 0.001 -

0.000 

Uncertainties 
(Sigma) 

0.044 [pixel] 
0.000 [mm] 

0.106 [pixel] 
0.000 [mm] 

0.086 [pixel] 
0.000 [mm] 0.001 0.005 0.010 0.000 0.000 

 

Bundle Block Adjustment Details 
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The correlation between camera internal 
parameters determined by the bundle adjustment. 
White indicates a full correlation between the 
parameters, ie. any change in one can be fully 
compensated by the other. Black indicates that the 
parameter is completely independent, and is not 
affected by other parameters. 

 

 Focal 
Length 

Principal 
Point x 

Principal 
Point y R1 R2 R3 T1 T2 

Initial Values 
1447.164 
[pixel] 
5.427 [mm] 

635.720 
[pixel] 
2.384 [mm] 

493.176 
[pixel] 
1.849 [mm] 

-
0.100 0.155 -

0.055 0.000 -
0.000 

Optimized Values 
1446.025 
[pixel] 
5.423 [mm] 

636.198 
[pixel] 
2.386 [mm] 

492.117 
[pixel] 
1.845 [mm] 

-
0.098 0.143 -

0.030 
-
0.000 0.000 

Uncertainties 
(Sigma) 

0.017 [pixel] 
0.000 [mm] 

0.016 [pixel] 
0.000 [mm] 

0.013 [pixel] 
0.000 [mm] 0.000 0.001 0.002 0.000 0.000 

F 

C 0 x 

C 0 y 

R1 

R2 

R3 

T1 

T2 

 

Internal Camera Parameters 

RedEdge-M_5.5_1280x960 (Green). Sensor Dimensions: 4.800 [mm] x 3.600 [mm] 

EXIF ID: RedEdge-M_5.5_1280x960 

The number of Automatic Tie Points (ATPs) per pixel, averaged over all images 
of the camera model, is color coded between black and white. White indicates 
that, on average, more than 16 ATPs have been extracted at the pixel location. 
Black indicates that, on average, 0 ATPs have been extracted at the pixel 
location. Click on the image to the see the average direction and magnitude of 
the reprojection error for each pixel. Note that the vectors are scaled for better 
visualization. The scale bar indicates the magnitude of 1 pixel error. 
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The correlation between camera internal 
parameters determined by the bundle adjustment. 
White indicates a full correlation between the 
parameters, ie. any change in one can be fully 
compensated by the other. Black indicates that the 
parameter is completely independent, and is not 
affected by other parameters. 

 

 Focal 
Length 

Principal 
Point x 

Principal 
Point y R1 R2 R3 T1 T2 

Initial Values 
1446.009 
[pixel] 
5.423 [mm] 

634.437 
[pixel] 
2.379 [mm] 

480.096 
[pixel] 
1.800 [mm] 

-
0.106 0.154 -

0.044 
-
0.000 

-
0.001 

Optimized Values 
1444.918 
[pixel] 
5.418 [mm] 

634.869 
[pixel] 
2.381 [mm] 

478.472 
[pixel] 
1.794 [mm] 

-
0.103 0.142 -

0.023 
-
0.000 

-
0.000 

Uncertainties 
(Sigma) 

0.046 [pixel] 
0.000 [mm] 

0.112 [pixel] 
0.000 [mm] 

0.089 [pixel] 
0.000 [mm] 0.001 0.005 0.010 0.000 0.000 

F 

C 0 x 

C 0 y 

R1 

R2 

R3 

T1 

T2 

Internal Camera Parameters 

RedEdge-M_5.5_1280x960 (Red). Sensor Dimensions: 4.800 [mm] x 3.600 [mm] 

EXIF ID: RedEdge-M_5.5_1280x960 

The number of Automatic Tie Points (ATPs) per pixel, averaged over all images 
of the camera model, is color coded between black and white. White indicates 
that, on average, more than 16 ATPs have been extracted at the pixel location. 
Black indicates that, on average, 0 ATPs have been extracted at the pixel 
location. Click on the image to the see the average direction and magnitude of 
the reprojection error for each pixel. Note that the vectors are scaled for better 
visualization. The scale bar indicates the magnitude of 1 pixel error. 
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The correlation between camera internal 
parameters determined by the bundle adjustment. 
White indicates a full correlation between the 
parameters, ie. any change in one can be fully 
compensated by the other. Black indicates that the 
parameter is completely independent, and is not 
affected by other parameters. 

 

 Focal 
Length 

Principal 
Point x 

Principal 
Point y R1 R2 R3 T1 T2 

Initial Values 
1454.389 
[pixel] 
5.454 [mm] 

636.600 
[pixel] 
2.387 [mm] 

486.000 
[pixel] 
1.823 [mm] 

-
0.107 0.158 -

0.058 
-
0.000 

-
0.000 

Optimized Values 
1453.483 
[pixel] 
5.451 [mm] 

637.277 
[pixel] 
2.390 [mm] 

484.344 
[pixel] 
1.816 [mm] 

-
0.103 0.134 -

0.000 
-
0.001 

-
0.000 

Uncertainties 
(Sigma) 

0.050 [pixel] 
0.000 [mm] 

0.124 [pixel] 
0.000 [mm] 

0.099 [pixel] 
0.000 [mm] 0.001 0.005 0.012 0.000 0.000 

 

F 

C 0 x 

C 0 y 

R1 

R2 

R3 

T1 

T2 

Internal Camera Parameters 

RedEdge-M_5.5_1280x960 (NIR). Sensor Dimensions: 4.800 [mm] x 3.600 [mm] 

EXIF ID: RedEdge-M_5.5_1280x960 

The number of Automatic Tie Points (ATPs) per pixel, averaged over all images 
of the camera model, is color coded between black and white. White indicates 
that, on average, more than 16 ATPs have been extracted at the pixel location. 
Black indicates that, on average, 0 ATPs have been extracted at the pixel 
location. Click on the image to the see the average direction and magnitude of 
the reprojection error for each pixel. Note that the vectors are scaled for better 
visualization. The scale bar indicates the magnitude of 1 pixel error. 
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The correlation between camera internal 
parameters determined by the bundle adjustment. 
White indicates a full correlation between the 
parameters, ie. any change in one can be fully 
compensated by the other. Black indicates that the 
parameter is completely independent, and is not 
affected by other parameters. 

 

 Focal 
Length 

Principal 
Point x 

Principal 
Point y R1 R2 R3 T1 T2 

Initial Values 
1445.654 
[pixel] 
5.421 [mm] 

637.101 
[pixel] 
2.389 [mm] 

480.896 
[pixel] 
1.803 [mm] 

-
0.104 0.150 -

0.046 0.000 -
0.001 

Optimized Values 
1444.408 
[pixel] 
5.417 [mm] 

638.104 
[pixel] 
2.393 [mm] 

479.137 
[pixel] 
1.797 [mm] 

-
0.100 0.129 0.006 0.000 -

0.001 

Uncertainties 
(Sigma) 

0.048 [pixel] 
0.000 [mm] 

0.118 [pixel] 
0.000 [mm] 

0.093 [pixel] 
0.000 [mm] 0.001 0.005 0.011 0.000 0.000 

F 

C 0 x 

C 0 y 

R1 

R2 

R3 

T1 

T2 

Internal Camera Parameters 

RedEdge-M_5.5_1280x960 (Red edge). Sensor Dimensions: 4.800 [mm] x 3.600 [mm] 

EXIF ID: RedEdge-M_5.5_1280x960 

The number of Automatic Tie Points (ATPs) per pixel, averaged over all images 
of the camera model, is color coded between black and white. White indicates 
that, on average, more than 16 ATPs have been extracted at the pixel location. 
Black indicates that, on average, 0 ATPs have been extracted at the pixel 
location. Click on the image to the see the average direction and magnitude of 
the reprojection error for each pixel. Note that the vectors are scaled for better 
visualization. The scale bar indicates the magnitude of 1 pixel error. 
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The correlation between camera internal 
parameters determined by the bundle adjustment. 
White indicates a full correlation between the 
parameters, ie. any change in one can be fully 
compensated by the other. Black indicates that the 
parameter is completely independent, and is not 
affected by other parameters. 

The number of Automatic Tie Points (ATPs) per pixel, averaged over all images 
of the camera model, is color coded between black and white. White indicates 
that, on average, more than 16 ATPs have been extracted at the pixel location. 
Black indicates that, on average, 0 ATPs have been extracted at the pixel 
location. Click on the image to the see the average direction and magnitude of 
the reprojection error for each pixel. Note that the vectors are scaled for better 
visualization. The scale bar indicates the magnitude of 1 pixel error. 

Camera Rig «RedEdge-M» Relatives. Images: 25825  

 Transl X 
[m] 

Transl Y 
[m] 

Transl Z 
[m] 

Rot X 
[degree] 

Rot Y 
[degree] 

Rot Z 
[degree] 

RedEdge-M_5.5_1280x960 
(Green) 

Reference Camera     

RedEdge-M_5.5_1280x960 (Blue)      
   Initial Values 0.030 0.000 0.000 -0.018 0.222 0.276 
   Optimized values 0.030 0.000 0.000 -0.000 0.269 0.282 
   Uncertainties (sigma)    0.004 0.004 0.000 
RedEdge-M_5.5_1280x960 (Red)      
   Initial Values 0.000 0.021 0.000 0.270 -0.047 0.205 
   Optimized values 0.000 0.021 0.000 0.243 -0.065 0.209 
   Uncertainties (sigma)    0.004 0.005 0.000 
RedEdge-M_5.5_1280x960 (NIR)      
   Initial Values 0.030 0.021 0.000 0.123 0.077 0.250 
   Optimized values 0.030 0.021 0.000 0.115 0.126 0.255 
   Uncertainties (sigma)    0.004 0.005 0.000 
RedEdge-M_5.5_1280x960 (Red 
edge)      

F 

C 0 x 

C 0 y 

R1 

R2 

R3 

T1 

T2 
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   Initial Values 0.015 0.011 0.000 0.085 0.048 0.356 
   Optimized values 0.015 0.011 0.000 0.091 0.085 0.357 
   Uncertainties (sigma)    0.004 0.005 0.000 

2D Keypoints Table  

 Number of 2D Keypoints per Image Number of Matched 2D Keypoints per Image 
Median 10000 2266 
Min 10000 0 
Max 10000 6063 
Mean 10000 2274 

2D Keypoints Table for Camera RedEdge-M_5.5_1280x960 (Blue) 
 Number of 2D Keypoints per Image Number of Matched 2D Keypoints per Image 
Median 10000 1440 
Min 10000 0 
Max 10000 5678 
Mean 10000 1530 

2D Keypoints Table for Camera RedEdge-M_5.5_1280x960 (Green) 
 Number of 2D Keypoints per Image Number of Matched 2D Keypoints per Image 
Median 10000 2487 
Min 10000 25 
Max 10000 5923 
Mean 10000 2520 

2D Keypoints Table for Camera RedEdge-M_5.5_1280x960 (Red) 
 Number of 2D Keypoints per Image Number of Matched 2D Keypoints per Image 
Median 10000 1799 
Min 10000 0 
Max 10000 6063 
Mean 10000 1853 

2D Keypoints Table for Camera RedEdge-M_5.5_1280x960 (NIR) 
 Number of 2D Keypoints per Image Number of Matched 2D Keypoints per Image 
Median 10000 1507 
Min 10000 0 
Max 10000 5732 
Mean 10000 1563 

2D Keypoints Table for Camera RedEdge-M_5.5_1280x960 (Red edge) 
 Number of 2D Keypoints per Image Number of Matched 2D Keypoints per Image 
Median 10000 1639 
Min 10000 0 
Max 10000 5680 
Mean 10000 1696 
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Median / 75% / Maximal Number of Matches Between Camera Models 
 RedEdge-

M_5.5_... (Blue) 
RedEdge-
M_5.5... 
(Green) 

RedEdge-
M_5.5_1... (Red) 

RedEdge- 
M_5.5_1...(NIR) 

RedEdge-
M_...(Red edge) 

RedEdge-
M_5.5_1280x960 (Blue) 

128 / 642 / 
4125 

    

RedEdge-
M_5.5_1280x960 
(Green) 

 
22 / 98 / 3598    

RedEdge-
M_5.5_1280x960 (Red)   178 / 768 / 4477   

RedEdge-
M_5.5_1280x960 (NIR)    128 / 618 / 4175  

RedEdge-
M_5.5_1280x960 (Red 
edge) 

    
149 / 674 / 4200 

3D Points from 2D Keypoint Matches  

 Number of 3D Points Observed 
In 2 Images 3750253 
In 3 Images 1001490 
In 4 Images 435873 
In 5 Images 210276 
In 6 Images 119107 
In 7 Images 73228 
In 8 Images 48348 
In 9 Images 33037 
In 10 Images 23440 
In 11 Images 16892 
In 12 Images 12582 
In 13 Images 9377 
In 14 Images 7046 
In 15 Images 5199 
In 16 Images 3920 
In 17 Images 3003 
In 18 Images 2256 
In 19 Images 1662 
In 20 Images 1352 
In 21 Images 988 
In 22 Images 803 
In 23 Images 669 
In 24 Images 525 
In 25 Images 399 
In 26 Images 315 
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In 27 Images 258 
In 28 Images 204 
In 29 Images 182 
In 30 Images 144 
In 31 Images 96 
In 32 Images 90 
In 33 Images 74 
In 34 Images 52 
In 35 Images 44 
In 36 Images 31 
In 37 Images 31 
In 38 Images 20 
In 39 Images 19 
In 40 Images 19 
In 41 Images 19 
In 42 Images 14 
In 43 Images 6 
In 44 Images 6 
In 45 Images 9 
In 46 Images 2 
In 47 Images 4 
In 48 Images 2 
In 49 Images 1 
In 50 Images 3 
In 52 Images 2 
In 53 Images 3 
In 54 Images 2 
In 55 Images 1 
In 56 Images 1 
In 58 Images 2 
In 59 Images 1 
In 63 Images 1 
In 64 Images 1 

2D Keypoint Matches  



90 
 

 
25 222 444 666 888 1111 1333 1555 1777 2000 

Figure 5: Computed image positions with links between matched images. The darkness of the links indicates the number of matched 2D 
keypoints between the images. Bright links indicate weak links and require manual tie points or more images. 

Number of matches 



91 
 

 

Min Error [m] Max Error [m] Geolocation Error X [%] Geolocation Error Y [%] Geolocation Error Z [%] 
- -1.29 0.00 0.00 0.00 
-1.29 -1.03 0.00 0.00 0.00 
-1.03 -0.78 0.00 0.00 0.00 
-0.78 -0.52 0.00 0.00 0.00 
-0.52 -0.26 0.03 0.19 0.04 
-0.26 0.00 52.42 53.78 43.63 
0.00 0.26 47.55 46.03 56.29 
0.26 0.52 0.00 0.00 0.04 
0.52 0.78 0.00 0.00 0.00 
0.78 1.03 0.00 0.00 0.00 
1.03 1.29 0.00 0.00 0.00 
1.29 - 0.00 0.00 0.00 
Mean [m]  -0.001034 -0.002108 0.001728 
Sigma [m]  0.023453 0.021406 0.016366 
RMS Error 
[m]  0.023476 0.021510 0.016457 

Min Error and Max Error represent geolocation error intervals between -1.5 and 1.5 times the maximum accuracy of all the images. Columns 
X, Y, Z show the percentage of images with geolocation errors within the predefined error intervals. The geolocation error is the difference 
between the initial and computed image positions. Note that the image geolocation errors do not correspond to the accuracy of the observed 
3D points. 

Relative Geolocation Variance  

Relative Geolocation Error Images X [%] Images Y [%] Images Z [%] 
[-1.00, 1.00] 91.40 98.11 99.04 
[-2.00, 2.00] 99.86 99.86 99.94 
[-3.00, 3.00] 99.98 99.98 99.96 
Mean of Geolocation Accuracy [m] 0.035490 0.035490 0.036850 
Sigma of Geolocation Accuracy [m] 0.018056 0.018056 0.032345 

Images X, Y, Z represent the percentage of images with a relative geolocation error in X, Y, Z. 

Geolocation Orientational Variance RMS [degree] 
Omega 3.364 
Phi 4.463 
Kappa 5.734 

Geolocation RMS error of the orientation angles given by the difference between the initial and computed image orientation angles.  

Geolocation Details 

Absolute Geolocation Variance 
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Hardware 
CPU: AMD Ryzen Threadripper 3970X 32-Core Processor  
RAM: 256GB 
GPU: unknown graphics card (Driver: unknown) 

Operating System Windows 10 Education, 64-bit 

Coordinate Systems  

Image Coordinate System WGS 84 
Output Coordinate System WGS 84 / UTM zone 11N 

Processing Options  

Detected Template    RedEdgeMX 5Band* 
Keypoints Image Scale Full, Image Scale: 2 
Advanced: Matching Image Pairs Aerial Grid or Corridor 
Advanced: Matching Strategy Use Geometrically Verified Matching: yes 
Advanced: Keypoint Extraction Targeted Number of Keypoints: Custom, Number of Keypoints: 10000 

Advanced: Calibration 
Calibration Method: Geolocation Based Internal 
Parameters Optimization: All 
External Parameters Optimization: All 
Rematch: Auto, no 

Rig «RedEdge-M» processing optimize relative rotation using a subset of secondary cameras 

 

Image Scale multiscale, 1 (Original image size, Slow) 
Point Density Optimal 
Minimum Number of Matches 3 
3D Textured Mesh Generation no 
LOD Generated: no 
Advanced: Image Groups Blue, Green, Red, NIR, Red edge 
Advanced: Use Processing Area yes 
Advanced: Use Annotations no 
Time for Point Cloud Densification 54m:56s 
Time for Point Cloud Classification NA 
Time for 3D Textured Mesh Generation NA 

Results  

Initial Processing Details 

System Information 

Point Cloud Densification details 

Processing Options 
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Number of Generated Tiles 6 
Number of 3D Densified Points 152826005 

Average Density (per m3) 10.72 

 

DSM and Orthomosaic Resolution 10 [cm/pixel] 

DSM Filters Noise Filtering: no 
Surface Smoothing: no 

Orthomosaic 

Generated: yes  
Merge Tiles: yes 
GeoTIFF Without 
Transparency: yes Google 
Maps Tiles and KML: no 

Raster DTM Generated: yes 
Merge Tiles: yes 

DTM Resolution 10 [cm/pixel] 
Radiometric calibration with reflectance 
target 

yes 

Index Calculator: Reflectance Map 
Generated: yes 
Resolution: 1 x GSD (11.2 
[cm/pixel]) 
Merge Tiles: yes 

Index Calculator: Indices ndvi 
Time for DSM Generation 00s 
Time for Orthomosaic Generation 08h:08m:07s 
Time for DTM Generation 00s 
Time for Contour Lines Generation 00s 
Time for Reflectance Map Generation 05h:45m:06s 
Time for Index Map Generation 03m:49s 

Camera Radiometric Correction  
 

Camera Name Band Radiometric Correction Type Reflectance 
target 

RedEdge-
M_5.5_1280x960 

Blue Camera, Sun Irradiance and Sun Angle using DLS 
IMU  

RedEdge-
M_5.5_1280x960 

Green Camera, Sun Irradiance and Sun Angle using DLS 
IMU  

RedEdge-
M_5.5_1280x960 

Red Camera, Sun Irradiance and Sun Angle using DLS 
IMU  

RedEdge-
M_5.5_1280x960 

NIR Camera, Sun Irradiance and Sun Angle using DLS 
IMU  

RedEdge-
M_5.5_1280x960 

Red 
edge 

Camera, Sun Irradiance and Sun Angle using DLS 
IMU  

 

DSM, Orthomosaic and Index Details 

Processing Options 
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