List of Not-for-Credit Courses

  • Understanding the role of data science in healthcare and public health system (30 min)
  • Overview of the data science process: data collection, cleaning, exploration, modeling, evaluation, and deployment (1 hour and 30 minutes)
  • Introduction to data science tools and programming languages (30 min) 

Module 1: Introduction to Python (Lecture time: 1 hour) 

  • What is Python? (10 min)
  • Why Python? (5 min)
  • Installing Python (15 min)
  • Python IDEs (15 min)
  • Jupyter Notebook Overview (15 min)

Module 2: Python Basics (Lecture time: 9 hours)

  • Python Basic Data types (30 min)
  • Expression (30 min)
  • Flow control (1 hour)
  • Lists (1 hour)
  • Slicing (1 hour)
  • IF statements (1 hour)
  • Loops (1 hour)
  • Dictionaries (1 hour)
  • Tuples (1 hour)
  • Functions (1 hour) 

  • Data ETL (Extract, Transform, Load) (15 min)
  • Data Cleaning (15 min)
  • Pandas (15 min)
  • Numpy (15 min)
  • Matplotlib (15 min)
  • Seaborn (15 min)
  • Univariate Non-graphical (15 min)
    • Central tendency
    • Spread
    • Skewness and kurtosis
  • Multivariate Non-graphical (15 min)
  • Univariate graphical (15 min)
    • Histogram
    • Stem-and-leaf-plots
    • Boxplots
  • Multivariate graphical (15 min)
    • line chart
    • Scatterplot
    • Heat map
    • Bubble chart

Module 1: Introduction to Database (Lecture time: 1 hour)

  • List the features of Oracle Database 11 g
  • Discuss the basic design, theoretical, and physical aspects of a relational database 
  • Categorize the different types of SQL statements 
  • Describe the data set used by the course
  • Log on to the database using SQL Developer environment
  • Save queries to files and use script files in SQL Developer 

Module 2: Retrieve Data using the SQL SELECT Statement (Lecture time: 1 hour) 

  • List the capabilities of SQL SELECT statements
  • Generate a report of data from the output of a basic SELECT statement
  • Select All Columns
  • Select Specific Columns 
  • Use Column Heading Defaults 
  • Use Arithmetic Operators 
  • Understand Operator Precedence
  • Learn the DESCRIBE command to display the table structure 

Module 3: Learn to Restrict and Sort Data (1 hour)

  • Write queries that contain a WHERE clause to limit the output retrieved
  • List the comparison operators and logical operators that are used in a WHERE clause
  • Describe the rules of precedence for comparison and logical operators
  • Use character string literals in the WHERE clause
  • Write queries that contain an ORDER BY clause to sort the output of a SELECT statement
  • Sort output in descending and ascending order

Module 4: Usage of Single-Row Functions to Customize Output (1 hour)

  • Manipulate strings with character function in the SELECT and WHERE clauses
  • Perform arithmetic with date data
  • Manipulate dates with the DATE Functions

Module 5: Aggregate Data using the Group Functions (30 min)

  • Use the aggregation functions in SELECT statements to produce meaningful reports
  • Divide the data into groups by using the GROUP BY clause 
  • Exclude groups of date by using the HAVING clause 

Module 6: Display Data from Multiple Tables Using Joins (15 min)

  • Write SELECT statements to access data from more than one table 
  • View data that generally does not meet a join condition by using outer joins

Module 7: Use Subqueries to Solve Queries (15 min)

  • Describe the types of problems that subqueries can solve
  • Define sub-queries 

 

 

  • Tableau basic (20 min)
  • Learn Tableau Dashboards (20 min)
  • Learn Tableau Basic Reports (20 min)
  • Learn Tableau Charts (20 min)
  • Learn Tableau Advanced Reports (20 min)
  • Learn Tableau Calculations & Filters (20 min)

Intermediate

Module 1: Descriptive statistics (Lecture time: 3 hours)

  • Central Tendency (25 min)
    • Mean
    • Median
    • Mode
    • Normal Distribution 
    • Standard normal distribution 
    • Population
    • Sample
    • Skewness
  • Standard Deviation (25 min)
  • Data deviation & distribution (25 min)
  • Variance (25 min)
  • Distance metrics (25 min)
    • Euclidean Distance
    • Manhattan Distance
  • Correlation (25 min)
    • Pearson correlation 
  • Variable analysis (25 min)
    • Univariate
    • Bivariate
    • Multivariate
  • Outlier analysis (25 min)
    • What is an Outlier?
    • Interquartile Range
    • Box & whisker plot
    • Upper Whisker
    • Lower Whisker
    • Scatter plot
    • Cook's Distance

Module 2: Inferential statistics (Lecture time: 1 hour) 

  • Probability Basics 
    • What does it mean by probability? (5 min)
    • Rules of probability (5 min)
    • Types of probability (5 min) 
    • ODDS Ratio (5 min)
    • Central limit theorem (5 min)
    • Probability of multiple events (5 min) 
    • Binomial distribution
    • Continuous Probability distribution (5 min) 
    • Bernoulli distribution (5 min) 
    • Normal distribution (5 min) 
    • Standard Normal distribution (5 min) 
    • Uniform distribution (5 min) 
    • Baye's theorem (5 min) 

Module 3: Hypothesis Testing (Lecture time: 1 hour) 

  • Null and Alternate Hypothesis (5 min) 
  • Critical value Method (5 min) 
  • P-value Method (5 min) 
  • Pearson's Correlation Coefficient (5 min) 
  • Spearman's Rank Correlation (5 min) 
  • Chi-Squared Test (5 min) 
  • Student's t-test (5 min) 
  • Analysis of Variance Test (ANOVA) (5 min) 
  • A/B testing (5 min) 

 

Module 1: Feature Engineering (Lecture time: 2 hours) 

  • Missing data imputation (10 min) 
  • Categorical encoding (10 min) 
  • Variable transformation (10 min) 
  • Outlier engineering (10 min) 
  • Date and time engineering (10 min) 

Module 2: Supervised Learning (Lecture time: 5 hours) 

  • Regression (2 hours) 
    • Linear Regression (40 min) 
    • Multiple Linear Regression (40 min) 
    • Polynomial Linear Regression (40 min) 
  • Classification (3 hours) 
    • Logistic regression (30 min) 
    • Naive Bayes Classifier (30 min) 
    • K -- Nearest Neighbour (30 min) 
    • SVM algorithm (30 min) 
    • Decision Trees (30 min) 
    • Random Forest (30 min) 
    • Boosting algorithm (30 min) 

Module 3: Model Evaluation and Validation (Lecture time: 2 hours) 

  • Classification (1 hour) 
    • Confusion Matrix (10 min) 
    • Precision (5 min) 
    • Recall (5 min) 
    • Specificity (5 min) 
    • F1 Score (5 min) 
    • Cross Validation (5 min) 
    • Overfitting vs Underfitting (5 min) 
    • Ridge and Lasso (5 min) 
    • ROC curve (5 min) 
    • Gini (5 min) 
    • Entropy (5 min) 
  • Regression (1 hour) 
    • MSE (15 min) 
    • R squared (15 min) 
    • RMSE (15 min) 
    • MAPE (15 min) 

Module 4: Dimensionality Reduction Methods (Lecture time: 2 hours) 

  • Principal Component Analysis (30 min) 
  • Singular Value Decomposition (30 min) 
  • Linear Discriminant Analysis (30 min) 
  • Isomap Embedding (30 min) 

Module 5: Unsupervised Learning (Lecture time: 1 hours) 

  • K-means Clustering (1 hour) 

 

Advanced 

  • Introduction (40 min) 
  • Shallow Neural Networks (40 min) 
  • Deep Neural Networks (40 min) 
  • Loss Functions (40 min) 
  • Training Models (40 min) 
  • Gradients and Initialization (40 min) 
  • Measuring Performance (40 min) 
  • Regularization (40 min) 
  • Convolutional Networks (40 min) 
  • Transformers (40 min) 
  • Generative Adversarial Networks (40 min) 
  • Diffusion models (40 min) 

  • Image Resizing (20 min) 
  • Image Rotation (20 min) 
  • Image Translation (20 min) 
  • Image Shearing (20 min) 
  • Image Normalization (20 min) 
  • Morphological Image Processing (20 min) 
  • Gaussian Image Processing (20 min) 
  • Edge Detection in image processing (20 min) 

Module 1: Introduction to NLP (Lecture time: 1 hour) 

  • Text Pre-processing (10 min) 
  • Noise Removal (10 min) 
  • Lexicon Normalization (10 min) 
  • Lemmatization (10 min) 
  • Stemming (10 min) 
  • Object Standardization (10 min) 

Module 2: Text to Features (Feature Engineering) (Lecture time: 1 hour)

  • Syntactic Parsing (5 min)  
  • Dependency Grammar (5 min) 
  • Part of Speech Tagging (5 min) 
  • Entity Parsing (5 min)  
  • Named Entity Recognition (5 min) 
  • Topic Modeling (5 min) 
  • N-Grams (5 min) 
  • TF -- IDF (5 min) 
  • Frequency / Density Features (5 min) 
  • Word Embedding (5 min) 

Module 3: Tasks of NLP (Lecture time: 1 hour) 

  • Text Classification (15 min)
  • Text Matching (15 min) 
  • Levenshtein Distance (15 min) 
  • Phonetic Matching (15 min) 
  • Flexible String Matching (15 min) 

Module 4: Large Language Model (Lecture time: 2.5 hours) 

  • What is LLM (30 min)
  • Structure of LLM(1 hour) 
  • Fine Tuning of LLM (1 hour) 

 

 

 

Image
NFC Pathway Final Flyer 1