List of Not-for-Credit Courses
- Understanding the role of data science in healthcare and public health system (30 min)
- Overview of the data science process: data collection, cleaning, exploration, modeling, evaluation, and deployment (1 hour and 30 minutes)
- Introduction to data science tools and programming languages (30 min)
Module 1: Introduction to Python (Lecture time: 1 hour)
- What is Python? (10 min)
- Why Python? (5 min)
- Installing Python (15 min)
- Python IDEs (15 min)
- Jupyter Notebook Overview (15 min)
Module 2: Python Basics (Lecture time: 9 hours)
- Python Basic Data types (30 min)
- Expression (30 min)
- Flow control (1 hour)
- Lists (1 hour)
- Slicing (1 hour)
- IF statements (1 hour)
- Loops (1 hour)
- Dictionaries (1 hour)
- Tuples (1 hour)
- Functions (1 hour)
- Data ETL (Extract, Transform, Load) (15 min)
- Data Cleaning (15 min)
- Pandas (15 min)
- Numpy (15 min)
- Matplotlib (15 min)
- Seaborn (15 min)
- Univariate Non-graphical (15 min)
- Central tendency
- Spread
- Skewness and kurtosis
- Multivariate Non-graphical (15 min)
- Univariate graphical (15 min)
- Histogram
- Stem-and-leaf-plots
- Boxplots
- Multivariate graphical (15 min)
- line chart
- Scatterplot
- Heat map
- Bubble chart
Module 1: Introduction to Database (Lecture time: 1 hour)
- List the features of Oracle Database 11 g
- Discuss the basic design, theoretical, and physical aspects of a relational database
- Categorize the different types of SQL statements
- Describe the data set used by the course
- Log on to the database using SQL Developer environment
- Save queries to files and use script files in SQL Developer
Module 2: Retrieve Data using the SQL SELECT Statement (Lecture time: 1 hour)
- List the capabilities of SQL SELECT statements
- Generate a report of data from the output of a basic SELECT statement
- Select All Columns
- Select Specific Columns
- Use Column Heading Defaults
- Use Arithmetic Operators
- Understand Operator Precedence
- Learn the DESCRIBE command to display the table structure
Module 3: Learn to Restrict and Sort Data (1 hour)
- Write queries that contain a WHERE clause to limit the output retrieved
- List the comparison operators and logical operators that are used in a WHERE clause
- Describe the rules of precedence for comparison and logical operators
- Use character string literals in the WHERE clause
- Write queries that contain an ORDER BY clause to sort the output of a SELECT statement
- Sort output in descending and ascending order
Module 4: Usage of Single-Row Functions to Customize Output (1 hour)
- Manipulate strings with character function in the SELECT and WHERE clauses
- Perform arithmetic with date data
- Manipulate dates with the DATE Functions
Module 5: Aggregate Data using the Group Functions (30 min)
- Use the aggregation functions in SELECT statements to produce meaningful reports
- Divide the data into groups by using the GROUP BY clause
- Exclude groups of date by using the HAVING clause
Module 6: Display Data from Multiple Tables Using Joins (15 min)
- Write SELECT statements to access data from more than one table
- View data that generally does not meet a join condition by using outer joins
Module 7: Use Subqueries to Solve Queries (15 min)
- Describe the types of problems that subqueries can solve
- Define sub-queries
- Tableau basic (20 min)
- Learn Tableau Dashboards (20 min)
- Learn Tableau Basic Reports (20 min)
- Learn Tableau Charts (20 min)
- Learn Tableau Advanced Reports (20 min)
- Learn Tableau Calculations & Filters (20 min)
Intermediate
Module 1: Descriptive statistics (Lecture time: 3 hours)
- Central Tendency (25 min)
- Mean
- Median
- Mode
- Normal Distribution
- Standard normal distribution
- Population
- Sample
- Skewness
- Standard Deviation (25 min)
- Data deviation & distribution (25 min)
- Variance (25 min)
- Distance metrics (25 min)
- Euclidean Distance
- Manhattan Distance
- Correlation (25 min)
- Pearson correlation
- Variable analysis (25 min)
- Univariate
- Bivariate
- Multivariate
- Outlier analysis (25 min)
- What is an Outlier?
- Interquartile Range
- Box & whisker plot
- Upper Whisker
- Lower Whisker
- Scatter plot
- Cook's Distance
Module 2: Inferential statistics (Lecture time: 1 hour)
- Probability Basics
- What does it mean by probability? (5 min)
- Rules of probability (5 min)
- Types of probability (5 min)
- ODDS Ratio (5 min)
- Central limit theorem (5 min)
- Probability of multiple events (5 min)
- Binomial distribution
- Continuous Probability distribution (5 min)
- Bernoulli distribution (5 min)
- Normal distribution (5 min)
- Standard Normal distribution (5 min)
- Uniform distribution (5 min)
- Baye's theorem (5 min)
Module 3: Hypothesis Testing (Lecture time: 1 hour)
- Null and Alternate Hypothesis (5 min)
- Critical value Method (5 min)
- P-value Method (5 min)
- Pearson's Correlation Coefficient (5 min)
- Spearman's Rank Correlation (5 min)
- Chi-Squared Test (5 min)
- Student's t-test (5 min)
- Analysis of Variance Test (ANOVA) (5 min)
- A/B testing (5 min)
Module 1: Feature Engineering (Lecture time: 2 hours)
- Missing data imputation (10 min)
- Categorical encoding (10 min)
- Variable transformation (10 min)
- Outlier engineering (10 min)
- Date and time engineering (10 min)
Module 2: Supervised Learning (Lecture time: 5 hours)
- Regression (2 hours)
- Linear Regression (40 min)
- Multiple Linear Regression (40 min)
- Polynomial Linear Regression (40 min)
- Classification (3 hours)
- Logistic regression (30 min)
- Naive Bayes Classifier (30 min)
- K -- Nearest Neighbour (30 min)
- SVM algorithm (30 min)
- Decision Trees (30 min)
- Random Forest (30 min)
- Boosting algorithm (30 min)
Module 3: Model Evaluation and Validation (Lecture time: 2 hours)
- Classification (1 hour)
- Confusion Matrix (10 min)
- Precision (5 min)
- Recall (5 min)
- Specificity (5 min)
- F1 Score (5 min)
- Cross Validation (5 min)
- Overfitting vs Underfitting (5 min)
- Ridge and Lasso (5 min)
- ROC curve (5 min)
- Gini (5 min)
- Entropy (5 min)
- Regression (1 hour)
- MSE (15 min)
- R squared (15 min)
- RMSE (15 min)
- MAPE (15 min)
Module 4: Dimensionality Reduction Methods (Lecture time: 2 hours)
- Principal Component Analysis (30 min)
- Singular Value Decomposition (30 min)
- Linear Discriminant Analysis (30 min)
- Isomap Embedding (30 min)
Module 5: Unsupervised Learning (Lecture time: 1 hours)
- K-means Clustering (1 hour)
Advanced
- Introduction (40 min)
- Shallow Neural Networks (40 min)
- Deep Neural Networks (40 min)
- Loss Functions (40 min)
- Training Models (40 min)
- Gradients and Initialization (40 min)
- Measuring Performance (40 min)
- Regularization (40 min)
- Convolutional Networks (40 min)
- Transformers (40 min)
- Generative Adversarial Networks (40 min)
- Diffusion models (40 min)
- Image Resizing (20 min)
- Image Rotation (20 min)
- Image Translation (20 min)
- Image Shearing (20 min)
- Image Normalization (20 min)
- Morphological Image Processing (20 min)
- Gaussian Image Processing (20 min)
- Edge Detection in image processing (20 min)
Module 1: Introduction to NLP (Lecture time: 1 hour)
- Text Pre-processing (10 min)
- Noise Removal (10 min)
- Lexicon Normalization (10 min)
- Lemmatization (10 min)
- Stemming (10 min)
- Object Standardization (10 min)
Module 2: Text to Features (Feature Engineering) (Lecture time: 1 hour)
- Syntactic Parsing (5 min)
- Dependency Grammar (5 min)
- Part of Speech Tagging (5 min)
- Entity Parsing (5 min)
- Named Entity Recognition (5 min)
- Topic Modeling (5 min)
- N-Grams (5 min)
- TF -- IDF (5 min)
- Frequency / Density Features (5 min)
- Word Embedding (5 min)
Module 3: Tasks of NLP (Lecture time: 1 hour)
- Text Classification (15 min)
- Text Matching (15 min)
- Levenshtein Distance (15 min)
- Phonetic Matching (15 min)
- Flexible String Matching (15 min)
Module 4: Large Language Model (Lecture time: 2.5 hours)
- What is LLM (30 min)
- Structure of LLM(1 hour)
- Fine Tuning of LLM (1 hour)