

27.10

The net force exerted on the electron (of charge q_e moving with velocity $\vec{\mathbf{v}}$) is $\vec{\mathbf{F}} = q_e(\vec{\mathbf{E}} + \vec{\mathbf{v}} \times \vec{\mathbf{B}})$. For the electron to undergo no acceleration $\vec{\mathbf{F}}=0$, and so $\vec{\mathbf{E}}+\vec{\mathbf{v}}\times\vec{\mathbf{B}}=0$, which requires $E = |\vec{\mathbf{v}} \times \vec{\mathbf{B}}| = vB \sin \theta$. Plug in $E = 1000 \,\mathrm{V/m}$, $B = 20.0 \times 10^{-2} \,\mathrm{T}$, and $\theta = 90.0^{\circ}$ to obtain

$$v = \frac{E}{B\sin\theta} = \frac{1000 \,\text{V/m}}{(20.0 \times 10^{-2} \,\text{T})(\sin 90.0^{\circ})} = 5.00 \times 10^{3} \,\text{m/s}.$$

27.15

An electron in the beam enters the crossing electric and magnetic field with $v_x = E/B$ [see Chapter 19). The time it takes for the electron to pass through the E-field in between the parallel plates of length L is $t=L/v_x$, during which it is being accelerated in the y-direction by the electric field at the rate of of $a_y = F_{\rm E}/m_{\rm e} = eE/m_{\rm e}$. So as it emerges from the E-field the x-component of its velocity remains v_x , while the y-component increases from zero to

$$v_{_{y}}=a_{_{y}}t=\left(\frac{eE}{m_{_{e}}}\right)\left(\frac{L}{v_{_{x}}}\right)\;.$$

Thus $\tan\theta = v_y/v_x = (eE/m_e)(L/v_x)/v_x$, or $e/m_e = v_x^2 \tan\theta/EL$. Now, If $v_x \gg v_y$. then $\tan \theta \approx \theta$ (as $\theta \ll 1$), whereupon

$$\frac{e}{m_{\rm e}} = \frac{v_x^2 \tan \theta}{EL} \approx \frac{v_x^2 \theta}{EL} = \frac{(E/B)^2 \theta}{EL} = \frac{E\theta}{B^2 L} \,,$$

where we used $v_x = E/B$ again.

From the hint we know that we must use relativistic approach. The KE of the electron as it emerges from the accelerating potential V is KE = eV, which is the difference between its rest energy $E_o = m_e c^2$ and the total energy $E = \gamma m_e c^2$, where $\gamma = 1/\sqrt{1 - v^2/c^2}$, with v its final

$$\mathrm{KE} = eV = \mathrm{E} - \mathrm{E}_{\mathrm{o}} = (\gamma - 1) m_{\mathrm{o}} \mathrm{c}^2 \,.$$

Solve for γ :

$$\gamma = \frac{eV}{m_{\rm e}{\rm c}^2} + 1 = \frac{e \cdot 1.00 \times 10^6 \, {\rm V}}{0.510 \, 9 \times 10^6 \, {\rm eV}} + 1 = 2.9573 \, ,$$

where we noted that $1 e \cdot V \equiv 1 eV$. Thus

$$v = c\sqrt{1 - \frac{1}{\gamma^2}} = (2.998 \times 10^8 \,\mathrm{m/s})\sqrt{1 + \frac{1}{(2.957 \,3)^2}} = 2.82 \times 10^8 \,\mathrm{m/s}.$$

X-ray diffraction by crystals satisfy the Bragg equation, Eq. (27.3): $2d\sin\theta_{\rm m}=m\lambda$. Here d is the spacing between adjacent atomic planes, $\theta_{\rm m}$ is the angle at which the m-th order reflection of the beam occurs, and λ is the wavelength of the incident beam. The first-order reflection angle θ_1 then satisfies

$$\sin \theta_1 = \frac{m\lambda}{2d} \bigg|_{m=1} = \frac{\lambda}{2d} \,.$$

Plug in $d=0.303\,\mathrm{nm}$ and $\lambda=0.090\,\mathrm{nm},$ and solve for θ_1 :

$$\theta_1 = \sin^{-1} \frac{\lambda}{2d} = \sin^{-1} \left[\frac{0.090 \,\mathrm{nm}}{2(0.303 \,\mathrm{nm})} \right] = 8.5^{\circ}$$