## 30.64

The fraction of a radioactive sample with decay constant  $\lambda$  that is left after a time t is given by Eq. (30.14) to be  $N/N_0 = e^{-\lambda t}$ . In this case  $\lambda = 5.5 \times 10^{-3}$  decays/s, and so the fraction of <sup>15</sup>O left after t = 4.0 s is

$$\frac{N}{N_{\rm o}} = e^{-\lambda t} = e^{-(5.5 \times 10^{-3}\,{\rm s}^{-1})(4.0\,{\rm s})} = 0.98 = 98\%\,,$$

meaning that the amount of the  $^{15}{\rm O}$  isotope will be diminished to 98% of its original value in  $4.0\,\mathrm{s}$ .

## 30.65

Similar to Problem (30.62), we first express the time  $t \ (= 1.00 \, \text{h} = 60.0 \, \text{min})$  in terms of  $t_{1/2} \ (= 1.18 \, \text{min})$ :  $t = [(60.0 \, \text{min/h})/1.18 \, \text{min}] \ t_{1/2} = 50.847 \, 46 \, t_{1/2}$ . Since the amount of the

sample decreases by a factor of 2 with every passing half-life, after 50.84746 half-lives (i.e., 1.00 h) the fraction of protactinium-234 left is

$$\frac{N}{N_{\rm o}} = \left(\frac{1}{2}\right)^{50.847\,46} = 4.94 \times 10^{-16} \,. \label{eq:Normalization}$$