4000

The astronaut is stationary relative to himself, so the time he measures for his own blood circulation is $\Delta t_{\rm g} = 45\,{\rm s}$. To an Earth-based observer, the corresponding time interval is $\Delta t_{\rm m}$, with $\gamma = 2$; so from Eq. (26.2)

$$\Delta t_{\text{ss}} = \gamma \Delta t_{\text{s}} = 2(45\,\text{s}) = 90\,\text{s}$$
.

26.7

In this case the life time of the particle measured in the lab frame is $\Delta t_{\rm M}=20\,{\rm ns}$, and $\Delta t_{\rm S}$, the life time measured when the particle is stationary, satisfies $\Delta t_{\rm M}=\gamma\Delta t_{\rm S}$; so

$$\Delta t_{\rm s} = \frac{\Delta t_{\rm M}}{\gamma} = \frac{20\,{\rm ns}}{10} = 2.0\,{\rm ns}\,.$$

26.10

The one-hour time interval the astronaut sets for her nap is measured onboard the spaceship, in which the event (the nap) is stationary. So $\Delta t_{\rm g}=1.00\,{\rm h}$. For an observer on Earth who is moving relative to the spaceship at $\nu=0.600{\rm c}$, the nap should last $\Delta t_{\rm M}$, with

$$\Delta t_{\rm M} = \frac{\Delta t_{\rm N}}{\sqrt{1 - V^2/c^2}} = \frac{1.00 \, \rm h}{\sqrt{1 - (0.600 c/c)^2}} = 1.25 \, \rm h \, ,$$

which is how long the flight controller on Earth should let her sleep as measured on his clock.

26.12

The time dilation factor is $\Delta t_{\rm M}/\Delta t_{\rm S} = \gamma = 1/\sqrt{1-\beta^2}$, where $\beta = v/c$, with $v = 1800\,{\rm mi/h}$. Convert the unit of v into m/s: $v = (1800\,{\rm mi/h})(1609\,{\rm m/mi})(1.000\,{\rm h}/3600\,{\rm s}) = 804.67\,{\rm m/s}$. Thus $\beta = v/c = (804.67\,{\rm m/s})/(2.998\times 10^8\,{\rm m/s}) = 2.684\times 10^{-6}\ll 1$, so from the binomial approximation $(1+x)^n\approx 1+nx$ for $|x|\ll 1$, we have, with $n=-\frac{1}{2}$ and $x=-\beta^2$,

$$\gamma = \left(1 - \beta^2\right)^{-\frac{1}{2}} \approx 1 + \left(-\frac{1}{2}\right)(-\beta^2) = 1 + \frac{1}{2}\left(2.684 \times 10^{-6}\right)^2 = 1.000\,000\,000\,000\,003\,6\,,$$

which equals 1.000 to four significant figures — which is as many as we can keep. If the approximation is not used, then

$$\gamma = \frac{1}{\sqrt{1 - \beta^2}} = \frac{1}{\sqrt{1 - (2.684 \times 10^{-6})^2}}$$

26.14

The life time of the particle, measured in its rest frame, is $\Delta t_{\rm g}=20\,{\rm ns}$. When it travels at $v=0.80{\rm c}$ with respect to the laboratory its life time measured in the laboratory frame is now dilated to $\Delta t_{\rm M}=\Delta t_{\rm g}/\sqrt{1-v^2/c^2}$. If the particle moves at a uniform speed of $v=0.8{\rm c}$ during its entire life time, it covers a distance of

$$L = v\Delta t_{\rm M} = \frac{v\Delta t_{\rm B}}{\sqrt{1-(v/c)^2}} = \frac{(0.8\times 2.998\times 10^8\,{\rm m/s})(20\times 10^{-9}\,{\rm s})}{\sqrt{1-(0.8c/c)^2}} = 8\,{\rm m}\,.$$