25.

The irradiance I of a sinusoidal electromagnetic wave is related to $E_{\rm o}$, the maximum value of its E-field, via Eq. (22.8):

$$I = \frac{1}{2} c \varepsilon_a E_a^2$$

= $\frac{1}{2} (2.998 \times 10^8 \text{ m/s}) (8.8542 \times 10^{-12} \text{ C}^2/\text{N} \cdot \text{m}^2) (1000 \text{ V/m})^2$
= 1327 W/m^2 .

25.35

The distance between the m-th irradiance maximum and the central axis, denoted as y_m , satisfies Eq. (25.7), $y_m \approx sm\lambda/a$, where $s=1.00\,\mathrm{m}$ is the distance between the slits and the screen, $a=0.200\,\mathrm{mm}$ is the slit separation, m=4, and $\lambda=487.99\,\mathrm{nm}=487.99\times10^{-6}\,\mathrm{mm}$ is the wavelength of the incident light beam. Thus

$$y_4 \approx \frac{sm\lambda}{a} = \frac{(1.00\,\mathrm{m})(4)(487.99 \times 10^{-6}\,\mathrm{mm})}{0.200\,\mathrm{mm}} = 9.76 \times 10^{-3}\,\mathrm{m} = 9.76\,\mathrm{mm}\,.$$

25.41

Similar to the previous problem, for the first minima on either side of the central axis $r_1 - r_2 \approx ay/s = m\lambda/2$, where $m = \pm 1$. So $y \approx m\lambda s/2a$, and the separation between the two adjacent black strips is $\Delta y = \Delta(m\lambda s/2a) = \lambda s\Delta m/2a$, where $\Delta m = +1 - (-1) = 2$. Plug in $\lambda = 450$ nm, s = 4.00 m, and $\Delta y = 0.500$ cm, and solve for a:

$$a = \frac{\lambda s \Delta m}{2 \Delta y} = \frac{(450 \times 10^{-9} \, \mathrm{m})(4.00 \, \mathrm{m})(2)}{2 (0.500 \times 10^{-2} \, \mathrm{m})} = 3.60 \times 10^{-4} \, \mathrm{m} = 0.360 \, \mathrm{mm} \, .$$

25.46

Measured from the central axis, the location of the first-order maximum for violet light with wavelength λ_1 is given by Eq. (25.7), $y_1 \approx s m_1 \lambda_1/a$, with $m_1 = 1$. Similarly, the location of