Success of CSULB Students in Introductory Mathematics and Statistics Courses

Jen-Mei Chang, Dana Hooten, Tangan Gao, Kris Slowinski, Tianni Zhou College of Natural Sciences and Mathematics

1. Why introductory mathematics/statistics?
2. Data analysis of Early Start Mathematics Program and GE B2 QR/Mathematics courses led to improved placement and targeted student support in redesign project
3. Conclusions and recommendations

CSULB NON-COMPLETION OF COURSES

AY 16-17:
2,462 COURSES
284,090 ENROLLED STUDENTS 19,403 D, F, WU GRADES (6.8\%)

CSULB TOP 100 "NON-PASSING" COURSES

AY 16-17:
100 COURSES
86,882 ENROLLED STUDENTS 9,875 D, F, WU GRADES (11.4\%)

IN THIS GROUP

AY 16-17:
13 COURSES IN MATH 8,001 ENROLLED STUDENTS
1,763 D, F, WU GRADES (22.0\%)

	TOTAL\# OF GRADES	UNIV SHARE	D+F+WU GRADES	D+W+WU UNIV SHARE	NON COMPLETION RATE
CSULB	$\mathbf{2 8 4 0 9 0}$	$\mathbf{1 0 0 . 0 0 \%}$	$\mathbf{1 9 4 0 3}$	$\mathbf{1 0 0 . 0 0 \%}$	$\mathbf{6 . 8 3 \%}$
CLA	97633	34.37%	7573	39.03%	7.76%
CHHS	52057	18.32%	1972	10.16%	3.79%
CNSM	33780	11.89%	4501	23.20%	13.32%
COTA	32143	11.31%	1179	6.08%	3.67%
COE	28244	9.94%	1735	8.94%	6.14%
CBA	27092	9.54%	2109	10.87%	7.78%
CED	10012	3.52%	255	1.31%	2.55%
UNIV	3129	1.10%	79	0.41%	2.52%

SOURCE: CSU CO DASHBOARD

Current Mathematics Pathways

Current Mathematics Pathways

COURSE REDESIGN 2012-16

SUMMARY AND RECOMMENDATIONS

COURSE REDESIGN 2012-16

- EARLY START COMBINED WITH ADAPTIVE LEARNING IS VERY EFFECTIVE IN IMPROVING STUDENTS' PREPARATION AND PLACEMENT
- HS GPAAND SAT CORRELATE WITH FRESHMAN SUCCESS IN ALGEBRA

Student success builds upon students' success in their first (and introductory) Mathematics/Statistics courses!

Data analysis of Early Start Mathematics Program and GE B2 QR/Mathematics courses led to improved placement and targeted student support in redesign project

2017 Early Start Mathematics Program at CSULB

3-unit
 (ESM 3, 21, 33)

1-unit
(ESM 1, 11)

Historic Failure Rate

On target to "lose" 98.5\% or 318 students in 2017 while, in fact, 115 were lost. The new format w/PPL saved 203 students at least one semester of dev math at CSULB.

1-unit ESM with ALEKS PPL in 2017

Course Outcomes

CR: advance to the next level

- 30-45: dev math level $1 \rightarrow$ dev math level 2
- 46 or higher: dev math level $2 \rightarrow$ GE math

RP: satisfied the CSU ESM requirement, but do not advance to the next level

NC: did not complete CSU ESM requirement, fall
 admission is jeopardized

Successful ESM completion \& subsequent course completion lead to improved placement in the $1^{\text {st }}$ GE B2 course at CSULB
CR in dev
math level 1

Targeted student support in GE B2 redesign

Graphics Key:
Bottleneck course

Eliminated under EO 1110
Created under EO 1110

Undergoing course
redesign under EO 1110

Devv math level 1

Placement of GE B2 courses with ALEKS PPL

ESM PPL ≥ 46

Without co-requisite

Quantitative
Reasoning
Intro to Stats
Business
Calculus,
Business
Statistics,

ESM PPL < 46

With co-requisite

Liberal
Studies Math

Business Calculus Business Statistics, Liberal Liberal
Studies Studies
Math

Calculus
PPL ≥ 80

Engineering Calculus 1

Calculus PPL ≥ 70

Biology

 Calculus 1- Explore interest during the $1^{\text {st }}$ semester and get GE credit.
- Students are encouraged to switch to non-STEM concentrations if receiving C or lower.

Placement of GE B2 courses (mostly Algebra) with
 high school GPA and Math SAT

Success in Algebra depends on HS GPA and Math SAT

Predictive Model with Logistic Regression

- Estimate the probability of a student pass Math 113 based on his/her high school GPA and math SAT scores
- The estimated logistic regression model based on Fall 2016 data is

$$
\operatorname{logit}\left(\widehat{p_{i}}\right)=-10.544+2.08 * G P A_{i}+0.0077 * S A T_{i}
$$

OR

$$
\widehat{p}_{i}=\frac{e^{\left(-10.544+2.08 * G P A_{i}+0.0077 * S A T_{i}\right)}}{1+e^{\left(-10.544+2.08 * G P A_{i}+0.0077 * S A T_{i}\right)}}
$$

- Built the model based on Fall 2016 data
- Applied the model to the Fall 2017 data
- Made prediction of each student who took the class in Fall 2017

Sensitivity: proportion of students who passed the class that are correctly identified as such
Specificity: proportion of students who failed the class that are correctly identified as such
1-sensitivity (false negative): proportion of students who predicted to fail the class but passed
>1-specificity (false positive): proportion of students who predicted to pass the class but failed

Predicted outcome changes for different cutoff values.

Area Under the Curve (AUC) of the Receiver Operating Characteristics (ROC) indicated that the model has a fairly good discriminant performance.

Predicted probability of passing Math 113 as a function of math SAT and different categories of high school GPA

Placement of GE B2 courses

ESM PPL ≥ 46

Without co-requisite

[(HSGPA $\geq 3.5)$ AND (SAT ≥ 500)]

ESM PPL < 46

With co-requisite

Calculus
PPL ≥ 80

Engineering Calculus 1

Calculus PPL ≥ 70

Biology

Calculus 1

- Explore interest during the $1^{\text {st }}$ semester and get GE credit.
- Students are encouraged to switch to non-STEM concentrations if receiving C or lower.

SUMMARY AND RECOMMENDATIONS

COURSE REDESIGN 2012-16

- EARLY START COMBINED WITH ADAPTIVE LEARNING IS VERY EFFECTIVE IN IMPROVING STUDENTS' PREPARATION AND PLACEMENT
- STUDENTS WHO START MATH SEQUENCE IN MAPB (PARTICULALRY STEM MAJORS) ARE AT INCREASED RISK FOR ATTRITION OR GRADUATING LATE
- FIRST MATH FRESHMAN COURSE PREDICTS MAJOR-SWITCHING PATTERNS (MAPB VS 113 VS CALCULUS)
- HS GPAAND SAT CORRELATE WITH FRESHMAN SUCCESS IN ALGEBRA
- ALEKS PPL PLACEMENT AND TARGETED SUPPORT IMPROVE STUDENT SUCCESS IN CALCULUS

